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Abstract: Growth hormone is an important regulator of bone homeostasis. In childhood, it determines the longitudinal 

bone growth, skeletal maturation, and acquisition of bone mass. In adulthood, it is necessary to maintain bone mass 

throughout life. Although an association between craniofacial and somatic development has been clearly established, cra-

niofacial growth involves complex interactions of genes, hormones and environment. Moreover, as an anabolic hormone 

seems to have an important role in the regulation of bone remodeling, muscle enhancement and tooth development. In this 

paper the influence of growth hormone on oral tissues is reviewed. 
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INTRODUCTION 

Growth hormone (GH)/insulin-like growth factor I (IGF-
I) axis influences normal bone metabolism, and is a major 
regulator of postnatal growth and development [1]. GH is 
secreted by the anterior pituitary gland and acts directly on 
tissues via specific GH receptors or indirectly via the pro-
duction of insulin-like growth factor I (IGF-I). Metabolic 
agents and hormonal systems such as growth hor-
mone/insulin-Like Growth Factor-I axis, have a strong influ-
ence on the metabolism of oral tissues particularly during the 

period of growth [2, 3]. The process of bone modeling and 
remodeling is orchestrated by a constellation of local growth 
factors, cytokines, and systemic hormones of which GH and 
IGF-1 are key components [4].  

The purpose of this study is to critically review the influ-
ence of Growth hormone/ Insulin-Like Growth Factor-I on 
oral tissues including the mandibular condyle. To find rele-
vant articles, a Medline search from 1966 to March 2014 
was conducted. The Medline search for English language 
articles was based on the key words ‘growth hormone’, ‘in-
sulin-Like Growth Factor-I’, ‘oral tissues’ and ‘mandibular 
condyle’. Bibliographies of related articles were assessed for 
relevant studies to identify additional published references. 

GH/IGF-I AXIS 

Growth hormone (GH) is a 191-amino acid, 22-kDa 
polypeptide, that is synthesized and secreted by cells called 
somatotrophs in the anterior pituitary under the control of 
hypothalamus [1]. It has many actions in the body including 
the regulation of bone growth and metabolism [2-4]. GH has 
a pulsatile secretion with age-dependent concentrations char-
acterised by low secretion in the prepubertal period, a rise at  
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puberty ( 0.4–0.5 mg/24 h), and a decrease in old age [4]. 
GH secretion is under the influence of additional hormonal 
signals such as sex steroids and thyroid hormone, whereas 
glucocorticoids inhibit its secretion [5, 6]. GH circulates 
bound to a liver synthesized GH-binding protein [7]. GH 
affects several tissues including liver, muscle, kidney, and 
bone [8]. Insulin-Like Growth Factor-I (IGF-I) is critical for 
promoting the protein anabolic effects of GH [4, 5, 8]. The 
genes of the GH family are assigned to chromosome 17q23-
q24 [9]. 

The somatomedin theory [1, 10] introduces the concept 
that GH stimulates skeletal growth by stimulating Insulin-
Like Growth Factor-I (IGF-I) which, in turn, stimulates lon-
gitudinal bone growth in an endocrine manner. The soma-
tomedin hypothesis was challenged by Isaksson et al., [11, 
12] and Green and co-authors [13] who introduced the “dual 
effector theory”. According to this theory [14-16] the two 
hormones act independently at different stages of endochon-
dreal maturation and differentiation. GH was found to stimu-
late young preadipocytes, whereas IGF-I stimulated cells at a 
later stage of development (Fig. 1).  

In support of a growth hormone direct effect, growth 
hormone receptor (GHR) has been detected in the hypertro-
phic zone of the cartilage that develops into a secondary os-
sification center [17, 18]. GH exerts pleiotropic effects on 
growth and development through GHR. The GHR consists 
of extra-cellular Gh-binding domain, transmembrane do-
main, and an intracellular domain involved in signal trans-
duction [19]. The GHR belongs to class I of the 
hematopoietin superfamily of cytokine receptors, which 
includes more than 30 members, among others prolactin, 
erythropoietin, and leptin [14, 15]. GHR gene located on 
chromosome 5p13.1-p12 and is 87 Kb long, with 10 exons 
encoding 620 amino acids [19, 20]. GHR and IGF-I recep-
tors has been immunolocalized in the PDL, along the adja-
cent mineralized tissue surfaces as well as in the dental tis-
sues. These appeared to be fibroblast-like, mononuclear cells 
[21]. 
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EFFECTS OF GH ON OSTEOBLASTS
 

GH and IGF-I are anabolic hormones and have the poten-
tial to regulate bone modeling and remodeling. Growth fac-

tors that regulate local bone metabolism include growth 

hormone (GH), insulin-like growth factor-I (IGF-I), epider-
mal growth factor (EGF) and interleukin-1 alpha (IL-

1alpha). GH stimulates the proliferation in a number of os-

teoblastic cell lines and primary isolated cells of various ori-
gins including human cells [2, 16, 28]. It seems to stimulate 

the proliferation, differentiation and the production of type I 

procollagen, osteocalcin and alkaline phosphatase in os-
teoblastic cells [20, 22]. Furthermore, the osteoblasts re-

sponded to GH by expressing bone morphogenetic proteins 

(BMP) 2 and 4 [25]. BMPs that bind to surface receptors on 
progenitor and mature osteoblasts can trigger a signaling 

pathway that promotes osteoprogenitor cell differentiation 

and the upregulation of osteoblast activity, and periodontal 
ligament (PDL) cells. 

The anabolic effects of IGFs on osteoblasts are modu-
lated by several IGF binding proteins, mainly IGFBP-3, -4, 
and -5 [20, 23]. The stimulatory effect of IGF-I is increased  
 

by IGFBP-3 and -5, whereas it is decreased by the IGFBP-4 
[24]. It influences osteoblastic function in all stages of de-
velopment and increases the replication of cells of the os-
teoblastic lineage [26, 27]. These proteins are believed to 
function in several ways: by enhancing the binding of IGF-I 
to its receptor, by decreasing the bioavailability of IGFI; by 
controlling the transport of the IGF to specific cell types 
thereby potentiating its activity in skeletal tissues; and by 
direct IGFI independent actions on target cells [21, 23]. One 
can assume that the GH and IGF-1 signaling pathways serve 
both independent and overlapping functions in the skeleton 
[25- 29] (Fig. 1). 

Osteoblasts express also GHR, which is a member of the 
cytokine receptor superfamily [19, 23, 24]. IGFBPs regulate 
both the number and the activity of GHR through inhibition 
of IGF activity, recommending a local feedback of the 
GH/IGF axis at the tissue level by two possible mechanisms: 
i) liver and bone-derived IGF-I inhibits pituitary GH secre-
tion, and ii) bone-derived IGF-I inhibits local action of GH 
by reducing GHR availability [20, 23, 25, 28]. It appears that 
some of the effects of GH on osteoblasts are mediated by 
IGFs, but others are not.  

 

 

Fig. (1). The GH–IGF axis. Abbreviations are: ALS, acid labile subunit; GH, growth hormone; GHBP, GH binding protein; GHRH, GH 

releasing hormone; IGF, insulin-like growth factor; IGFBP, IGF binding protein. 
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EFFECTS OF GH ON OSTEOCLASTS  

When GH stimulates bone formation, bone turnover is 
enhanced, thereby releasing molecules from activated mar-
row stromal cells and osteoblasts that also lead to enhanced 
osteoclastogenesis and mature osteoclast activity [29]. When 
either GH or IGF-I was added to bone cells, the formation as 
well as the resorption activity of osteoclast-like cells was 
increased [30]. GH stimulates osteoclastic bone resorption 
through both direct and indirect (IGF-I and IL-6) actions on 
osteoclast differentiation. It has been demonstrated that IGF-
I supports activation and formation of osteoclasts in cultures 
of unfractionated mouse bone cell [29], while human osteo-
clasts express functional IGF-I receptors [3]. During tooth 
eruption and tooth movement, alveolar bone osteoblasts and 
osteoclasts demonstrate GHR immunoreactivity. The great-
est numbers of positive cells were located in the PDL space 
than on the mineralized tissues [29, 31] (Fig. 2).  

EFFECTS OF GH ON ALVEOLAR BONE AND ORAL 
MUSCLES 

Bone growth is a three-dimensional process and, as such, 
bone length and bone width naturally grow in proportion to 
each other. GH stimulates periosteal apposition through: i) 
the action of osteoblasts that add mineralized tissue on the 
outer (periosteal) bone surface, a process called periosteal 
apposition [32, 33] and ii) indirectly through the forces act-
ing on bones by the muscles, itself being regulated by ana-
bolic effects of GH and IGF-1 on muscle tissue. 

GH exerts growth-promoting and metabolic effects in 
target tissues by binding to the transmembrane GHR and 

triggering enhanced GHR association with, and activation of 
the cytoplasmic tyrosine kinase JAK2 [9, 19]. Skeletal mus-
cle cells respond rapidly to GH administration through in-
creased tyrosine phosphorylation of the GHR [34]. GHR is 
required for normal skeletal muscle development. First, by 
regulating myoblast production of IGF-1, normal myofiber 
type specification, myonuclei accumulation, and expansion 
of myofiber diameter [35]. Second, promotes GH functions 
(independent of IGF-1) facilitating normal insulin action in 
skeletal muscle, which ultimately impacts global nutrient 
metabolism [36, 41]. It should be noticed also, that muscle 
mass accompanied by increasing muscle strength, preceded 
and exceeded any bone mass gain during GH therapy [37-
41]. Sotiropoulos et al., [41] has shown that GH signaling 
profoundly influenced muscle mass, predominantly by pro-
moting fusion of myoblasts with nascent myotubes. Moreo-
ver, have shown that mice globally deficient in GH receptor 
have reduced muscle mass with defective myofiber specifi-
cation and growth. Similar, the loss of anabolic GH/IGF-1 
action on GHD individuals could affect muscle mass and 
muscle force and as a consequence the bone adaptation and 
the cortical thickness [42].  

EFFECTS OF GH ON MANDIBULAR CONDYLE  

The condylar cartilage in the mandible is a secondary 
type cartilage and it is unique among ossifying cartilages in 
the skeleton in that it is derived from cells of periosteal ori-
gin of the neural crest. Secondary cartilages are structurally 
distinct from limb growth plate and differ primarily in their 
superficial layers, which comprise a perichondrium in which 
prechondroblastic cells secrete a type I collagen rather than 

Fig. (2). Growth hormone and bone metabolism. GH, growth hormone; IGFBP, IGF binding protein.
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type II secreted by chondrocytes [43, 44]. In mandibular 
condyle, chondrogenesis is activated when the external stim-
uli, e.g., condylar repositioning, generate the differentiation 
of mesenchymal cells in the articular layer of cartilage into 
chondrocytes, which proliferate and then progressively ma-
ture into hypertrophic cells [45]. 

Molecular genetic analysis has shown that both GHR and 
IGF-I receptors are present in the chondroprogenitor and 
chondroblast layers of the mandibular condyle [46]. The 
local production of IGF-I is parallel to the distribution of 
IGF-I receptors, whereas the action of GH on this cartilage 
appears to be IGF-I dependent [47]. Under GH excess, local 
IGF-I synthesis is stimulated; the mitotic activity and the 
mature cells of the mandibular cartilage are increased, lead-
ing to more endochondral ossification [48, 49]. Conversely, 
a lack of GH decreases mitotic activity through less IGF-I 
synthesis, leading to less endochondral ossification [50]. 

Idiopathic short stature and Laron syndrome is caused by 
the dominant-negative defects of the intracellular domain of 
GHR, and affected individuals have smaller facial measure-
ments too, including the length of the mandible [51]. The 
relationship between craniofacial morphology and GHR mu-
tations (P56IT variant) was studied in normal adult Japanese 
males and females. At position 1777 in GHR, a transversion 
of amino acid from cytosine to adenine changed codon 561 
from proline to threonine (P561T), affecting the cytoplasmic 
domain of the GHR [52]. Individuals without P56IT had a 
significantly greater mandibular ramus length than did those 
with P56IT. This suggests that the GHR gene P56IT variant 
may be associated with mandibular height growth and can be 
a genetic marker for it. When the relationship between cra-
niofacial morphology and single-nucleotide polymorphisms 
(SNPs) in GHR were investigated in Chinese Han individu-
als [53], patients with a genomic polymorphism at codon 526 
(I526L) of the GHR gene had a greater mandibular ramus 
length than the control group. Tomoyasu et al., [54] analyzed 
5 single-nucleotide polymorphisms (SNPs) of the GHR in 
Japanese population found an association between P561T, 
C422F and mandibular ramus height. However, they 
couldn’t report a correlation between the I526L polymor-
phism of the GHR and mandibular ramus height like Chinese 
Han individuals. Similar are the results in the Korean popu-
lation [55]. In addition, the effect of P561T heterozygous 
mutation on children with and without mandibular protrusion 
was investigated in Japanese children [56]. The mandibular 
linear parameters tended to be smaller in subjects carrying 
the heterozygous mutation, suggested that P561T variant 
functions as an inhibitory factor in the process of mandibular 
growth. 

EFFECTS OF GH ON TOOTH TISSUES  

The development of the dentition is an integral part of 
craniofacial growth, even though it is not closely related to 
general growth. At the cellular level, the differentiation of 
odontoblasts from the neural crest cells is a long process 
comparable with the process of osteoblast differentiation. 
GH is known to increase the formation of bone and hard 
tissues of the tooth (dentine, cementum, and enamel), as do  
 

bone morphogenetic proteins [25]. GH receptors are ex-
pressed in these tissues and could mediate local growth re-
sponses. This is found in the distal cytoplasm of the future 
amelodentinal junction [58]. Moreover, IGF-I receptors has 
been demonstrated in the early stages of rat molar tooth bud 
development in vivo [57]. Thus, GH may be the major regu-
lator at IGF-I expression in the early stages of tooth devel-
opment. 

The effects of GH on odontogenic epithelial cells were 
investigated on the growing root tip of the incisors of 8 
Lewis dwarf rats- four of them treated by GH (66μg/100gr 
body/wt) compare to 4 normal Lewis rats [57]. Significantly 
fewer odontogenic epithelia were found in dwarf rats, but in 
treated dwarf rats the numbers of nuclei in the internal 
enamel epithelium, stratum intermedium, and Hertwig root 
sheath were equivalent to normal rats. GH seems to increase 
cell proliferation of both the inner dental epithelium (IDE), 
dental papilla, as well as, in Hertwig's Epithelial Root Sheath 
(HERS) determining the root dimensions. They speculated 
that the epithelial stem cells are targets for GH as a mito-
genic. The GH mitogenic stimulus is mediated through epi-
dermal growth factor (EGF) which acts as a GH-dependent 
mitogenic. An alternative mechanism may lie in some feed-
back mechanism resulting from differentiation. Thus, if GH 
promotes the odontogenic cells to differentiate, feedback 
would induce the stem cells to divide to maintain the pipe-
line. 

Similarly, in order to evaluate the effects of GH and IGF-

I on odontogenesis in early bell stage, recombinant hGH (50 

or 100 ng/ml), IGF-I (100 or 200 ng/ml) or fatal calf serum 

were added to the media of 16-day old, fetal mouse’s first 

molar tooth germs [58]. The GH-treated tooth germs had 

increased mitotic indices and higher cell densities in the den-

tal papillae, while the greatest extent of differentiation and 

the higher volumetric changes were observed on IGF-I-

treated germs. Moreover, GH and IGF-I induce production 

of morphogenetic protein 2 and 4 (BMP-2, BMP-4) and 

Transforming Growth Factor-beta superfamily, affecting the 

odontoblast differentiation as well as dentine formation. 

Growth hormone can be detected as early as the cap stage 

within the dental papilla. However, the undifferentiated den-

tal mesenchymal cells of the dental papilla, up until the cap 

stage, showed very weak amount for GH receptor. The same 

is true for the IGF-I receptors. It seems that GH and IGF-I on 

the proliferation of the odontogenic mesenchyme is similar 

to that postulated for cartilage and bone i.e. that both are 

mitogenic, but that GH primes a small proportion of 

preodontoblasts which then become IGF-I sensitive. This 

suggests that the effect of GH on dentine growth in dwarf 

rats is to produce a larger population of odontoblasts subse-
quently active in dentine matrix deposition [59]. 

The effect of GH status on the cellular cementum as well 
as on the tooth shape and size was investigated in decalcified 
first mandibular molars of GH-excess, dwarf and GH-
receptor-knockout mice [60, 61]. Cellular cementum reduced 
nearly 10 times in GH receptor-knockout mice, three times 
in GH antagonist mice, and increased twice in giant mice 
[60]. Moreover, morphometric analysis of 10 linear dentin  
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matrix dimensions revealed that Dwarf animals showed 
smaller crown, shorter and smaller dentin roots and mesio-
distal width at the cementoenamel junction (CEJ) axis. Inter-
estingly, even if GH-excess models had longer roots, neither 
the mesio-distal crown width nor the root dentin thickness 
was affected by the GH excess [62].  

Moreover, dental maturation has shown to be consis-
tently delayed in GHD children, although to a lesser degree 
than skeletal maturation. Microdontia, missing third molars, 
smaller premolar crowns, and partial eruption of the perma-
nent dentition as well as delayed dental age have been re-
ported [63-68]. In idiopathic short stature children and GHD 
patients, GH administration helps to normalize skeletal 
growth but dental development is not significantly affected 
[67]. One the other hand, Krekmanova et al., showed an ac-
celeration of dental maturity after 2 years GH therapy in 
GHD child [66]. 

DISCUSSION 

Both modeling and remodeling are distinct physiologic 
responses to integrated mechanical and metabolic demands. 
GH acts directly on osteoblasts to stimulate bone formation 
whereas stimulate osteoclastic bone resorption too, through 
its direct action on the maturation of osteoclast precursor 
cells and through its indirect activation of mature osteoclasts, 
possibly via stromal cells [30]. Markers of bone metabolism, 
including serum alkaline phosphatase, procollagen 1 car-
boxylterminal propeptide, and deoxypyridinoline, increased 
significantly by GH administration [71]. Finally, GH powder 
application around dental implants placed immediately after 
tooth extraction enhances bone density and collagen fibers 
[72, 73].  

Most experimental orthodontics studies have shown that 
10–14 days are required for one complete bone remodelling 
cycle to take place [21]. The peak in bone resorption on the 
compression side occurs 7 days after orthodontic force appli-
cation appliance activation. The amount of GH receptors was 
transiently decline in the compressed PDL area during the 
first three days. The initial depression of the amount of GHR 
is the result of the trauma of the orthodontic force applica-
tion. However, the gradual increase in GHR immunoreactiv-
ity at days 7 and 14 (peak osteoclastic activity) suggests that 
cells have an altered function, possibly undergoing differen-
tiation and proliferation [29]. Rh-Gh application on the pe-
riodontic cells can improve the recovery of pathologic 
changes caused by the orthodontic forces [74]. Orthodontic 
tooth movement seems to produce tissue reactions that are 
associated not only with local factors related to teeth and 
occlusion, but also with systemic factors related to bone me-
tabolism [69, 70].  

Furthermore, GH/IGF-I axis influences the loading-
related bone formation modulating the responsiveness of 
bone tissue to mechanical stimuli by changing thresholds for 
bone formation [71-75]. Cortical bone formation rate and 
cancellous bone volume increases when bone is reloaded and 
IGF-I is added [76]. GH/IGF-I axis interacts with sex ster-
oids in periosteal apposition challenging the traditional con-
cept of androgen- stimulatory and estrogen-inhibitory effects 
on periosteal expansion [77].  

GH affects muscle tissues too, which regulate cortical 
bone geometry [38]. Muscle enlargement is accompanied by 
increasing muscle strength leading to secondary adaptive 
bone gain [37]. Growth of the facial bones such as maxilla 
and mandible occurs partly from direct remodeling of the 
surfaces of the bone. Normal muscle development and func-
tion is a prerequisite for normal bone adaptation and en-
largement. Administration of GH regulates muscle mito-
chondrial function by increasing the levels of several key 
mitochondrial proteins, and by switching fuel utilization to-
ward fat oxidation [78]. In GHD not only the muscle weight 
is reduced, but also the myosin chain isoform and fiber type 
distribution is changed resulting in a deficit of periosteal 
bone formation [79]. Similar mechanisms in the craniofacial 
area could be account for the much reduced growth rate of 
facial bones in GHD individuals compared to normal one 
[49]. GH through periosteal apposition and muscular growth 
seems to play an important role in facial growth and devel-
opment [33, 35, 38].  

The condylar cartilage has quite a different embryologic 
origin than the cartilage of the cranial base synchondroses or 
the epiphyses of the long bones. In young individuals it dis-
plays some functional characteristics of both a growth plate 
and an articular cartilage [43]. The adaptive remodeling of 
condylar cartilage proceeds with the biomolecular pathway 
initiating from chondrogenesis and finalizing with os-
teogenesis. While condylar cartilage from the young animals 
responded only slightly to GH [47, 48] a significant response 
was observed on cartilage from the old animals [80]. It 
seems that at a later age, when the chondroblasts are no 
longer dividing in the condylar cartilage, the undifferentiated 
cells constitute the target of GH, similar to the condition in 
long bone epiphyseal cartilage [11, 15]. The increased 
Knowledge of the germinal cells that proliferate in mandibu-
lar condyle, as well as, the effects of growth factors, is prom-
ising application to clinical treatment in the near future.  

The process of tooth formation is quite similar to that of 
bone formation. Dental mesenchyme cells differentiate into 
odontoblasts, which produce and secrete collagenous and 
non-collagenous matrix protein during dentin formation. GH 
is able to induce proliferation of epithelial stem cells in mo-
lar buds, along with preameloblast differentiation and den-
tine matrix formation [57]. Growth hormone, GHR and its 
binding protein are detectable during tooth bud formation at 
the embryonic cap and bell stages provoked morpho-
differentiation, and dentinogenesis [81]. GH through 
morphogenetic protein 2 and 4 (BMP-2, BMP-4) and growth 
factor-b superfamily, effect the odontoblast differentiation as 
well as dentine and enamel formation [82] Inhibition of 
BMP-4 expression because of GH deficiency results in loss 
of tooth crown morphology [67]. 

The effect of GH supplementation on craniofacial growth 
has been studied in children with idiopathic short stature 
(ISS) or GHD and those born small for gestational age 
(SGA), as well as in children with syndromes or hypopitui-
tary deficiency [49, 67, 82-84]. These children have small 
facial height and width, small head circumference, immature 
small face, protruding frontal bones, saddle nose and convex 
profile. Most cephalometric studies demonstrated short ra-
mus height as well as small linear dimensions in the poste-
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rior cranial base and mandibular and maxillary lengths. Fur-
thermore, the cranial base angle and gonial angle as well as 
the angle between the maxillary and mandibular planes are 
larger than normal. It seems that structures maturing more 
rapidly are more susceptible to the influence of external fac-
tors like GHD than more slowly maturing structures [85]. 

Despite the relatively widespread use of GH to augment 
stature, the effects of this practice on the growth of the cra-
niofacial complex have not been extensively investigated. 
The greater increases in growth in the mandibular length 
(ramus, not the corpus) and posterior face height indicate 
that the interstitial cartilage growth of the condyles and 
spheno-occipital synchondrosis are influenced more by GH 
treatment than the periosteal and sutural growth sites [67, 83, 
84, 86, 87]. As a general rule, the earlier the GH administra-
tion, the larger were the positive effects on craniofacial 
structures such as the posterior cranial base. Most studies 
have suggested delaying orthodontic treatment because GH 
therapy can cause unpredictable mandibular growth [88]. 

CONCLUSION 

GH/IGF-I axis seems to elicit varying responses in cra-
niofacial region. It plays a major role in regulating growth 
during childhood and adolescence and also regulates metabo-
lism through its binding to the growth hormone transmem-
brane receptor. It especially affects growth sites with en-
dochondral ossification, such as the condylar cartilage and 
the cranial base. It has the potential to regulate odontogene-
sis, bone modeling and remodelling, exerting its anabolic 
effects on both trabecular and cortical bone. Although the 
understanding of the role of the GH in craniofacial tissues 
has increased enormously in recent years, there are still lots 
of things which need to be the subject of research studies.
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