

Artificial Intelligence & Dental Healthcare: Current Status and Future Challenges

Frederick C. S. Chu^{1,*}¹Faculty of Dentistry, The University of Hong Kong, Hong Kong, China

Keywords: AI, Generative AI, Clinical dentistry, Robotics, Double-edged sword, Clinical practitioners, Machine learning.

© 2026 The Author(s). Published by Bentham Open.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: <https://creativecommons.org/licenses/by/4.0/legalcode>. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

*Address correspondence to this author at the Faculty of Dentistry, The University of Hong Kong, Hong Kong, China; E-mails: fredchu@graduate.hku.hk and chuchoshun@netvigator.com

Cite as: Chu F. Artificial Intelligence & Dental Healthcare: Current Status and Future Challenges. Open Dent J, 2026; 20: e18742106445842. <http://dx.doi.org/10.2174/0118742106445842251219051043>

Received: October 12, 2025

Revised: November 20, 2025

Accepted: November 24, 2025

Published: January 30, 2026

Send Orders for Reprints to
reprints@benthamscience.net

1. INTRODUCTION

Artificial Intelligence (AI) is the development of computer systems capable of learning and solving problems like human beings. Generative AI (Gen AI) now bridges the usability gap in AI by providing a natural language interface for interacting with complex models [1]. Gen AI can generate original text, images, and even videos in response to users' requests. The Gen AI is mainly built on machine learning and deep learning.

As the storm of the AI revolution spreads worldwide, the healthcare sector has been drawn into the vortex of rapid technological change over the past 10 years. AI-assisted systems allow clinical practitioners to solve problems that once were the realm of sci-fi. The following discussion is a brief review of AI use in healthcare across some medical and dental areas over the past decade, drawing the reader's eye closer to the thrive-and-shine story of AI application. Nevertheless, AI could be a 'disruptive' technology, and appropriate measures should be implemented to enhance technological governance and ensure that AI-assisted healthcare can navigate the future challenges [2].

When IBM's AI system Watson won the television game show Jeopardy in 2011, we realized that the significant benefits and perceived disruption from AI applications were on the immediate horizon. Watson has been groomed to do more serious work in healthcare, particularly in diagnosing

diseases. An AI such as Watson has enormous potential advantages over human doctors [3].

Another attention-grabbing story is the breakthrough made by Elsevier in building AI tools to provide not only the diagnosis but also medical solutions for patients. Elsevier, a global multimedia publishing company, gave serious consideration to using its vast medical data to build AI tools for healthcare purposes. Elsevier succeeds. It has built an advanced clinical decision support platform, which uses natural language processing and machine learning to suggest the optimal treatment pathways for patients. The platform uses anonymized patient data, including medical histories, treatment histories, and outcomes. It uses a database of five million medical insurance claims. It also includes almost all articles published in its journals over the last 140 years [4].

The success stories of some European countries in actually incorporating AI models into their healthcare systems for disease diagnosis should also be brought into the spotlight. For instance, Sweden and Finland are already using AI solutions to help healthcare providers detect cancer at an early stage. These applications can also be found in Germany. In the UK, Imperial College London is using AI to develop a diagnostic tool for tuberculosis [5].

It is an unassailable fact that China is among the countries that have incorporated AI models into its

healthcare systems. For example, an AI-empowered hospital opened in Wuzhen, Zhejiang Province, in late 2023. Another AI medical model developed by a team in Shanghai has successfully passed the national medical licensing examination. On the clinical front, work is underway to harness Generative AI to reduce doctors' administrative burdens [6]. As China seeks new solutions to the challenges posed by an aging population and disparities in access to medical resources, more hospitals are expected to incorporate AI technology into their healthcare systems [7].

Just like in other fields of medicine, AI is also rapidly transforming the practice of clinical dentistry. A comprehensive White Paper was published by the American Dental Association in 2022, and we can see that the scope of AI-related dental work is broad and continues to expand. AI technology can assist dentists in diagnosis and treatment planning in cariology [8], endodontics [9], implant dentistry [10], orthodontics [11], oral and maxillofacial surgery, periodontology, and in the prediction of treatment prognosis to a certain extent. AI has significantly improved diagnostic accuracy and enhanced efficiency in orthodontics, prosthodontics, and implantology by optimizing treatment simulation, material selection, and surgical precision [12].

Personalized education and improved communication with patients can also be achieved with the use of AI [13]. With AI, patient care can also be enhanced using teledentistry for people living in remote areas with limited access to dental professionals [14]. For the dental patients, case acceptance is also more favorable when AI technology is used for discussion of findings and possible treatment plans [15].

However, we have to understand the limitations of AI technologies. For example, understanding patients' concerns, measuring the probing depth of periodontal pockets, taking accurate images, and radiographs would still need to be carried out thoroughly by the clinician. It is still not clear whether AI could truly provide personalized dental medicine because of the limitations of current algorithms and the data provided [16]. On the other hand, AI still cannot replace a comprehensive literature search and analysis for authors preparing a manuscript on implant treatment [17]. Although the use of robotics with AI in endodontics is also showing promising outcomes [18], the costs for installation and maintenance are high. Given the high success rates of endodontic treatments using conventional techniques, the development of AI in this area may not bring us significant cost-effectiveness. And more importantly, it would still require the utmost scrutiny by a clinician to determine if the diagnoses and treatment options are logical and to reject the recommendations when necessary.

AI gives clinicians the opportunity to make diagnoses and treatment plans with high efficiency and accuracy, but there are still many challenges. These include patient acceptance, legal liability, and training of dental personnel [19]. The ultimate and biggest challenge for scientists, engineers, and dental healthcare professionals would

probably be the integration of AI into robotic dentistry to provide operative treatments without human intervention.

There is no doubt that AI is set to become one of the biggest economic drivers in the medical technology space over the next few years. But AI is a double-edged sword. In view of the economic benefits AI technology brings to our healthcare systems and the unstoppable momentum of the AI revolution, guardrails should be put in place to strengthen technological governance for the well-being of our patients.

CONCLUSION

Last but not least, high-quality data remains essential for any AI system to 'learn', and rigorous research will continue to be paramount.

AUTHOR'S CONTRIBUTIONS

The author confirms sole responsibility for the following: study conception and design, data collection, analysis and interpretation of results, and manuscript preparation.

ABBREVIATION

AI = Artificial Intelligence

FUNDING

None.

CONFLICT OF INTEREST

The author declares no conflict of interest, financial or otherwise.

ACKNOWLEDGEMENTS

The author would like to acknowledge the help of Mr. Kacee Ting, LLB, LLM, PCLL, Barrister-at-law, for his support in preparing this editorial.

REFERENCES

- [1] Villena F, Vélez C, García-Huidobro R, Aguayo S. Generative artificial intelligence in dentistry: Current approaches and future challenges. arXiv 2024. <http://dx.doi.org/10.48550/arXiv.2407.17532>
- [2] Chu F, Wong K T. AI innovations transform healthcare amid calls for appropriate regulation. 2024. Available from: <https://www.chinadailyhk.com/hk/article/614096>
- [3] Harari YN. *Homo Deus: A brief history of tomorrow*. London: Vintage 2016.
- [4] Marr Bernard. *Artificial Intelligence in Practice*. West Sussex: John Wiley & Sons Ltd. 2019.
- [5] Loohuis K. AI in healthcare in Northern Europe suggests future pathways. 2023. Available from: <https://www.computerweekly.com/feature/AI-in-healthcare-in-northern-Europe-suggests-future-pathways>
- [6] Hong Kong's Hospital Authority (HA) invests in AI to drive efficiency and transform care journey. 2024. Available from: https://www.hospitalmanagementasia.com/tech-innovation/hong-kongs-hospital-authority-ha-invests-in-ai-to-drive-efficiency-and-transform-care-journey/?utm_source=online&utm_medium=social&utm_id=HMA+Digital
- [7] China embraces AI-assisted healthcare with caution. 2024. Available from: <https://english.news.cn/20241205/01cc9b4796b94788ab91cdce8c770c6f/c.html>

[8] Mertens S, Krois J, Cantu AG, Arsiwala LT, Schwendicke F. Artificial Intelligence for caries detection: Randomized trial. *J Dent* 2021; 115: 103849. <http://dx.doi.org/10.1016/j.jdent.2021.103849> PMID: 34656656

[9] Ourang SA, Sohrabniya F, Mohammad-Rahimi H, *et al.* Artificial intelligence in Endodontics: Fundamental principles, workflow, and tasks. *Int Endod J* 2024; 57(11): 1546-65. <http://dx.doi.org/10.1111/iej.14127> PMID: 39056554

[10] Revilla-León M, Gómez-Polo M, Vyas S, *et al.* Artificial Intelligence applications in implant dentistry: A systematic review. *J Prosthet Dent* 2023; 129(2): 293-300. <http://dx.doi.org/10.1016/j.prosdent.2021.05.008> PMID: 34144789

[11] Azimi N, Talebi Rafsanjan K, Khanmohammadi Khorami MM, Ebadifar A, Azadi A. Applications of machine learning in image analysis to identify craniosynostosis: A systemic review and meta-analysis. *Orthod Craniofac Res* 2025; 28(5): 733-51. <http://dx.doi.org/10.1111/ocr.12918>

[12] Moeini A, Torabi S. The role of Artificial Intelligence in dental diagnosis and treatment planning. *J Oral Dent Health Nexus* 2025; 2(1): 14-26. <http://dx.doi.org/10.61838/kman.jodhn.2.1.2>

[13] Thorat V, Rao P, Joshi N, Talreja P, Shetty AR. Artificial Intelligence (AI) in patient education and communication in dentistry. *Cureus* 2024; 16(5): e59799. <http://dx.doi.org/10.7759/cureus.59799> PMID: 38846249

[14] Batra P, Tagra H, Katyal S. Artificial Intelligence in teledentistry. *Discoveries* 2022; 10(3): e153. <http://dx.doi.org/10.15190/d.2022.12> PMID: 36530958

[15] Westgarth D. AI is absolutely a friend when used responsibly. *BDJ In Practice* 2025; 38(9): 290-1. <http://dx.doi.org/10.1038/s41404-025-3257-5>

[16] Bornstein MM. Artificial Intelligence and personalised dental medicine - Just a hype or true game changers? *Br Dent J* 2023; 234(10): 755. <http://dx.doi.org/10.1038/s41415-023-5815-8> PMID: 37237207

[17] Sadowsky SJ. Can ChatGPT be trusted as a resource for a scholarly article on treatment planning implant-supported prostheses? *J Prosthet Dent* 2025; 134(2): 438-43. <http://dx.doi.org/10.1016/prosdent.2025.03.025>

[18] Adil AH, Snigdha NT, Fareed M, Karobari MI. Robotics in Endodontics: A comprehensive scoping review. *J Dent* 2025; 157: 105741. <http://dx.doi.org/10.1016/j.jdent.2025.105741> PMID: 40216071

[19] Gopalakrishnan D. Role of AI in dentistry: Opportunities and challenges. *J Appl Dent Oral Sci* 2025; 11(1): 5. <http://dx.doi.org/10.1177/30497418251333168>