OPEN ACCESS

ISSN: 1874-2106

RESEARCH ARTICLE

Shear Bond Strength of CAD/CAM Highly Translucent Zirconia Bonded to Occlusal Dentin after Different Extrinsic Modifications: An *In vitro* Study

Nassreen Hassan Albar^{1,#}, Thilla Sekar Vinothkumar^{1,#}, Halima Faya Almashy², Amal Ali Yaqoub², Wasan Hassan Hamzi², Mohammed M. Al Moaleem³, Syed Nahid Basheer¹ and Mohmed Isagali Karobari^{4,*}

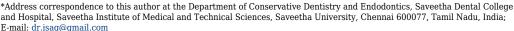
¹Department of Restorative Dental Sciences, Division of Operative Dentistry, College of Dentistry, Jazan University, Jazan, Saudi Arabia

Abstract:

Introduction: The bond between highly translucent zirconia (HTZ) onlay restorations and the resin cement is challenging due to its non-glassy structure. This study compares the effect of different extrinsic modifications on the shear bond strength of HTZ to occlusal dentin after thermocycling.

Methods: Forty human molars were prepared and stored in 0.5% chloramine. Ceramic discs (n = 40) were distributed into four groups. HTZ discs underwent airborne-particle abrasion (Group ZA), 30 μ m diamond abrasion (Group ZB), and no treatment (Group ZN). All HTZ discs were treated with 10-MDP primer. Lithium disilicate discs (Group LD-control) were treated with about 4.5% hydrofluoric acid and silane. All discs were cemented to dentin using resin cement. SBS was measured using a universal testing machine, and fracture types were assessed.

Results: Group ZA showed the greatest SBS among HTZ groups (Tukey's test; *p*-value < 0.05), though none exceeded the LD-control group (*p*-value < 0.0001). Most fractures occurred at the zirconia-resin cement interface, relatively less in group ZA (40%).


Discussion: The current study highlights that combined mechanical and chemical treatment has the potential to strengthen the bond of HTZ to occlusal dentin. Moreover, it includes both the resin-zirconia and resin-dentin interfaces in the experiment that closely simulates the intracoronal restoration. One of the limitations is that the results may vary in the oral environment during the clinical trials because of external factors, such as saliva, food, and masticatory forces. Use of thermo-mechanical ageing could have overcome this limitation.

Conclusion: Combined mechanical and chemical treatment improved HTZ bonding to dentin. Further clinical studies are needed to establish optimal surface modification protocols.

Keywords: Bond strength, Dental ceramic, Dental onlays, 10-MDP, Resin cement, Zirconia.

 $\ ^{\odot}$ 2025 The Author(s). Published by Bentham Open.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

^{*}These authors contributed equally to this work.

Cite as: Albar N, Vinothkumar T, Almashy H, Yaqoub A, Hamzi W, Al Moaleem M, Basheer S, Karobari M. Shear Bond Strength of CAD/CAM Highly Translucent Zirconia Bonded to Occlusal Dentin after Different Extrinsic Modifications: An In vitro Study. Open Dent J, 2025; 19: e18742106418713. http://dx.doi.org/10.2174/0118742106418713250914060125

Received: June 05, 2025 Revised: July 29, 2025 Accepted: August 27, 2025 Published: September 16, 2025

Send Orders for Reprints to reprints@benthamscience.net

²Intern Affairs Unit, College of Dentistry, Jazan University, Jazan, Saudi Arabia

 $^{^{3}}$ Department of Prosthetic Dental Sciences, College of Dentistry, Jazan University, Jazan, Saudi Arabia

⁴Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India

1. INTRODUCTION

Polycrystalline tetragonal zirconia stabilized with yttrium at 3 mol% is ideal for onlays in posterior teeth with favorable qualities like biocompatibility, aesthetic appeal, and strong mechanical properties. Its qualities have improved despite its lack of purity due to the addition of minute amounts of yttrium oxide or hafnium [1, 2]. In recent times, it has shown emergence as a versatile and promising material among other dental ceramics. The opacity offered by the tetragonal phase of zirconia has been recently replaced with the cubic phase of monolithic zirconia that contains relatively more yttria stabilizers (3 mol%; partially stabilized zirconia), which offers translucency at a thickness of 0.5 mm [3, 4].

The high translucency of zirconia is obtained at the expense of its strength due to the reduction in the toughening during the transformation from the tetragonal to the monoclinic phase. This behavior is attributed to the increase in cubic biphasic stable phase (30-50%) that does not undergo phase transformation to stop the crack propagation [4, 5]. It is thus defined as a mixed cubic/ tetragonal fully stabilized zirconia. The cubic phases were increased by adding yttrium oxide to 5 mol% in the thirdgeneration zirconia [6]. Basically, the volume of the cubic crystals is greater than that of the tetragonal ones. This makes the material more translucent because light scatters less intensely at the residual porosities and grain borders. In addition, the cubic crystal structures emit incident light more uniformly in all spatial directions than the tetragonal ones because they are more isotropic [6].

Zirconia's structure and extrinsic modification are key factors in achieving a long-lasting bond between zirconia and the adhesive cement [7]. Many adhesion techniques have been studied to date, including zirconia extrinsic modifications and the use of adhesives, primers, and resin cements [1, 8, 9]. It is well known that the bonding of zirconia to teeth or any other substrate needs a strong resin bond [1]. There are various micro-mechanical bonding techniques that involve sandblasting with aluminum oxide, diamond grinding, and etching with hydrofluoric acid. Many chemical bonding techniques, such as tribochemical silica coating, porcelain coating, and application of coupling agents like 10-methacryloyloxydecyl dihydrogen phosphate (MDP) and silanes, were also tried [1]. However, the physical properties and composition of zirconia differ significantly from ceramics, which contain silica. The low reactivity of zirconia with acid imposes a constraint on the acid etching process [10, 11]. Kern et al. proposed that a long-lasting, robust bonding to zirconia might be achieved using air particle abrasion, primers, and/or luting resins incorporated with 10-MDP, which was supported by the data from the clinical trials compared to laboratory studies on bond strength [12].

Filling the minute void between an indirect restoration and the tooth, with mechanical locking of the restoration in place to prevent dislodgement during function, is the main function of the luting agent/material [13]. Modern luting agents, such as resin, glass-ionomer, and resin-

modified glass-ionomer, show a high success rate clinically [13–15]. Resin luting agents are unique in filling and sealing the tooth-restoration gap by forming the polymer matrix. Glass-ionomer cements, possessing adequate translucency, are easy to mix with good flow properties and adhesion to the tooth structure and base metals. They are primarily used for luting metal and metal-ceramic restorations, but can also be used with all-ceramic crowns (alumina/zirconia) [13]. On the other hand, a study contradicted the positive impact of air abrasion on zirconia's flexural characteristics [16].

However, the highly translucent zirconia (HTZ) does not yield to etching, which consequently prevents precise identification of the adhesive processes [7]. Overall, there is no standard protocol that discusses the relative extrinsic modification method, which involves any mechanical or chemical, or a combination of chemical and mechanical methods for the bonding of HTZ to resins.

The present research mainly focuses on the comparison of different mechanical and chemical treatments on HTZ and their impact on shear bond strength (SBS) against occlusal dentin that represents a substrate for inlays and onlays. The primary intention of this study was to evaluate the shear bond strength of highly translucent zirconia treated with different extrinsic modifications against occlusal dentin after thermocycling. The secondary intention was to compare the quality of extrinsic modifications based on the frequency of fracture types. The null hypothesis considered was that there is no difference in the shear bond strength of HTZ to occlusal dentin due to different extrinsic modifications.

Although several studies have evaluated different surface treatments on zirconia, few reports have demonstrated HTZ adhering to occlusal dentin, which is a therapeutically relevant substrate for onlays and overlays, especially after thermocycling. The novelty of this study is in its direct comparative analysis of various mechanical and chemical surface treatments on HTZ, alongside thermocycling, to evaluate the clinically significant shear bond strength (SBS) results. Our research used occlusal dentin to accurately simulate the intraoral environment compared to previous assessments using flat enamel or artificial substrates.

2. MATERIALS AND METHODS

This *in vitro* study adhered to the Declaration of Helsinki and ethical approval (REC-45/05/891& CODJU-2316I dated November 5 and December 10, 2023, respectively) was provided by the Scientific Research Committee of Jazan University. The composition and manufacturer details of materials used in this study are given in Table 1.

2.1. Sample Size

The power of the study was calculated using means and standard deviations from comparable prior research [17], with the help of G*Power software, the sample size determined was less than ten while assuming the power as 80%. Nonetheless, it was determined that ten samples in each group were sufficient.

Table 1. Materials used for experiments	Table	1.	Materials	used for	experiments.
---	-------	----	-----------	----------	--------------

Name	Specification	Composition	Product	Company
		$(ZrO2+ HfO2+ Y2O3) \ge 99\%$, other oxides (≤ 0.5).[Y2O3 (4.5-6%), Al2O3($\le 0.5\%$)]	UpceraDental Zirconia HT	Upcera Dental Technology Co. Ltd., Shenzhen, China.
Glass-ceramic CAD/CAM ceramic		Lithium di silicate,ZrO2 (0.0 - 8.0%), ZnO (0.0 - 8.0%), Al2O3 (0.0 - 5.0%), MgO (0.0 - 5.0%), K2O (0.0 - 13.0%), P2O5 (0.0 - 11.0%), Coloring oxides (0.0 - 8.0%)	IPS e.max CAD HT	IvoclarVivadent AG, Schaan, Liechtenstein
Self-adhesive dual cure resin cement	Medium viscosity, universal shade	UEDMA, BMEP, HEMA, TMPTMA, H2O, catalysts Fillers: Barium,glass, ytterbium trifluoride, inert minerals	Embrace wetbond	Pulpdent Corp., Watertown, MA, USA
Air abrasion unit Powder		Precious corundum (Al2O3) of particle size 50 μm	Cobra	Renfert GmbH, Hilzingen, Germany
Ceramic primer	Liquid	3-trimethoxysilylpropyl methacrylate,10-Methacryloyloxydecyl dihydrogen phosphate (MDP), Ethanol	Clearfil ceramic primer plus	Kuraray Noritake Dental Inc., Okayama, Japan
Ceramic etchant Gel		>5% Hydrofluoric acid	IPS Ceramic Etching Gel	IvoclarVivadent AG, Schaan, Liechtenstein
Silane Liquid		Silane methacrylate, phosphoricmethacrylate and sulfide methacrylate	Monobond N	IvoclarVivadent AG, Schaan, Liechtenstein

2.2. Teeth Specimens

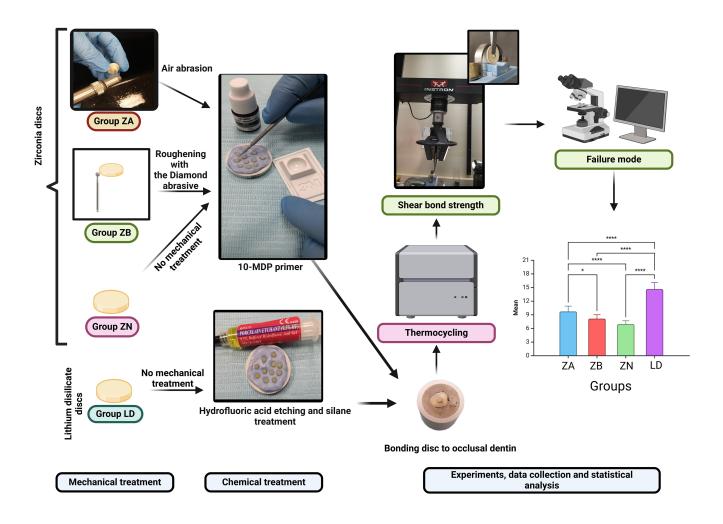
Forty freshly extracted human permanent molars due to periodontal reasons were collected from adults with informed consent between December 11, 2023, and February 5, 2024, from the institute where permission was granted, and stored in 0.5% chloramine T (TCI America, Lake Forest, IL, USA) liquid for 7 days and then transferred to physiological saline to keep them hydrated. Acrylic resin cylinders (Ø28 mm x 30 mm height) were used to mount the teeth with the crown exposed. A unique holder was used to place the tooth inside the mold to guarantee exact alignment and parallelism. The occlusal surface was ground to expose the dentin with the help of a grinding unit (Automata A; Jean Wirtz, Dusseldorf, Germany) under water coolant. The mounted cylinders containing teeth were divided into 4 groups of 10 each by using specific software (Random Allocation Software, Version 2.0; Microsoft Corporation, WA, USA) [9-11, 18].

2.3. Preparation of Ceramic Samples

Forty cylindrical (Ø4 mm x 6 mm height) ceramic specimens were prepared (Fig. 1). Thirty specimens were milled from pre-sintered HTZ blanks (Dental Zirconia HT; Upcera Dental Technology Co. Ltd., Shenzhen, China) using computer-aided design (Worknc CAM software; Hexagon AB, Stockholm, Sweden) and computer-aided manufacturing (CAD/CAM) on a wet milling machine (A52W, Upcera Dental Technology Co. using diamond-coated burs (OnePro Dental, Shandong, China), followed by final sintering at 1450°C (GT1 furnace; Upcera Dental Technology Co. Ltd.) as per the manufacturer's instructions. Using random allocation software, the HTZ samples were also split into three experimental groups of ten. Another set of 10 discs was digitally milled from lithium disilicate glass (IPS e.max CAD; Ivoclar Vivadent AG, Schaan, Liechtenstein) blocks as per the manufacturer's instructions. The final e.max restoration was created by digitally milling the glass ingots using diamond milling burs (Diamond RFID, Amann Girrbach AG, Maeder, Austria) in a milling machine (Ceramill Matik; Amann Girrbach AG) using the Dental CAD TruSmile Module (exocad GmbH, Darmstadt, Germany). This created ceramic

blocks with the appropriate shape, which were subsequently heated at 850°C in a furnace (Program at CS6; Ivoclar Vivadent AG). Every specimen was polished using abrasive paper with grits of 600, 800, and 1000 while being water-cooled. All the pairs of non-bonded side ceramic discs and the sides of the respective mounted resin cylinders were color-coded to segregate group-wise prior to extrinsic modification.

2.4. Groups and Extrinsic Modification


The prepared ceramic specimens were mounted groupwise temporarily on condensation silicone impression material (Zeta plus; Zhermack SpA, Polesine, Italy) for convenience in handling during the extrinsic modification.

Group ZA-HTZ samples were exposed to air particle abrasion using alumina particles of 50 μm in size (Cobra, Renfert GmbH, Hilzingen, Germany) at a pressure of 2.5 bar positioned 10 mm away from the nozzle and directed perpendicular to the longitudinal axis of the HTZ disc surface for 15 seconds/mm² using a tabletop device (Vario Basic, Renfert GmbH, Hilzingen, Germany) and chemically treated with a liquid possessing 10-MDP (Clearfil primer plus; Kuraray Noritake Dental Inc., Okayama, Japan). A micro brush was used to apply a single layer of ceramic primer, which was then allowed to sit for 10 seconds and allowed to dry for 5 seconds.

Group ZB-Zirconia samples were abraded under water coolant with 30 μm grit round diamond bur (Bredent, Senden, Germany) under low speed (20000 rpm), and the chemical treatment was done with ceramic primer containing 10-MDP. The diamond bur was moved across the surface of the HTZ disc in a single direction and was replaced after using it on five samples.

Group ZN-No mechanical treatment was done in this group. Chemical treatment was performed with a ceramic primer containing 10-MDP.

Group LD (control)-4.5% hydrogen fluoride was used to treat the lithium disilicate glass ceramic samples for 20 seconds, followed by silanization with 3-methacryloxy-propyl-trimethoxysilane (Monobond N; Ivoclar Vivadent AG) for 1 minute.

Fig. (1). Schematic representation of methodology followed in this study.

After cleaning for five minutes in acetone and five minutes in water using an ultrasonic cleaner (SW1500, CBM, Tokyo, Japan) [19, 20], each specimen was dried using an oil-free air spray. The air-abrasion procedures were carried out by a single experienced technician. All the ceramic specimens were subsequently bonded [18] to the corresponding teeth (Fig. 2A-C) using self-adhesive resin cement (Embrace WetBond; Pulpdent Corp., Watertown, MA, USA) under static pressure of 30 N (Fig. 2A) mimicking the thumb pressure on a surveyor (Dentalfarm SRL, Turin, Italy) for 2 minutes to ensure proper seating and a thin film of resin cement [21]. During this time, the extruded flash of luting resin was cleaned using a microbrush, and the interphase was protected from atmospheric oxygen using a gel (Liquid Strip, Ivoclar Vivadent AG). The samples were light-cured for 30 seconds with a lightcuring unit (Bluephase Style, Ivoclar Vivadent AG) with a power intensity of 1100 mW/cm². After 3 minutes of setting time and an incubation period of 37°C, the samples

were thermocycled (Thermocycler THE1100e/230; SD Mechatronic GmbH, Feldkirchen-Westerham, Germany) for 5000 heat cycles that alternate between 5°C and 55°C every 5 seconds and a holding time of 5 seconds in water [22].

2.5. Evaluation of Shear Bond Strength

The SBS was evaluated with the help of a universal testing machine under shear force (Instron 5965 Dual Column Tabletop Testing Machine, Canton, MA, USA). The bonded specimens were positioned firmly on a support that kept the plane of the bonded interface in line with the long axis of the crosshead. The sample was stressed in shear (Fig. 2D) by moving the head at the rate of 1 mm/min until fracture occurred. The highest force at fracture was recorded, and the SBS was determined by applying the formula SBS (MPa) = load (N)/area (mm²), where 12.57 mm² is the area of the disc face [23].

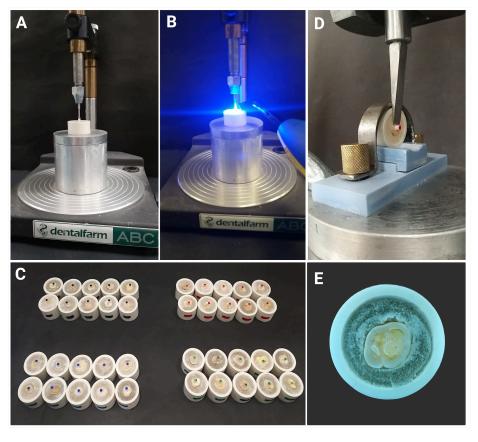


Fig. (2). Shear bond strength test. (A) Simulated pressure applied while bonding ceramic disc to occlusal dentin, (B) Light curing the resin cement, (C) Bonded samples of all four groups with color code, (D) Illustration of shear force on the universal testing machine, (E) Occlusal dentin after shear fracture for fracture type analysis.

2.6. Type of Fracture

The fracture type was analyzed using a computer-controlled microscope (KH-7700; Hirox Co., Ltd., Tokyo, Japan). The fractured dentin samples (Fig. **2E**) were observed on a digital microscope at 50x magnification. All the images were categorized by a single investigator under standardized room lighting conditions as follows:

- Adhesion fracture at the resin-dentin interface (less than 50% or no luting resin).
- Adhesion fracture at the resin-ceramic interface (100% resin cement without craters).
- Cohesion fracture in the resin cement (100% resin cement with irregular craters).
- Combination of both adhesion and cohesion fracture (100% resin cement with irregular craters).

2.7. Statistical Analysis

The data were analyzed using IBM SPSS Statistics for Windows (Version 29.0; IBM Corp., Armonk, NY). Mean and standard deviation (SD) were employed as descriptive statistics to characterize the data. One-way ANOVA in conjunction with post hoc analysis using Tukey's test was utilized to determine the significant difference in the

multivariate analysis. The probability value of 0.05 is regarded as the significance level in all the statistical techniques mentioned above.

3. RESULTS

The mean SBS among the four groups (Table 2) showed a highly significant (one-way ANOVA; p-value <0.0001) variation; group ZA showed a higher mean value than the other two experimental groups. The control (group LD) had the highest mean SBS of all the groups. The SBS in all the experimental groups (Table 3, Fig. 3) was significantly lower than that of the control (Tukey's test; p-value < 0.0001). The mean SBS of group ZA (9.7 \pm 1.18) was significantly higher (p-value < 0.05) than that of groups ZB (8.11 \pm 0.87) and ZN (6.9 \pm 0.75). The mean difference in SBS between the groups ZB and ZN was not significantly different (p-value = 0.7942). The dentin face of fractured samples in the digital micrographs revealed that the zirconia samples predominantly exhibited adhesion fracture at the resin-ceramic interface (Table 4, Fig. 4A-D), whereas control samples exhibited adhesion fracture at the resin-dentin interface. Among the experimental groups, group ZA had the least (40%) fractures at the resin-ceramic interface.

Table 2. Multivariate study of the shear bond strength data and their descriptive statistics.

Group	N	Mean	SD	95% Confidence Interval	<i>p</i> -value	
ZA	10	9.70	1.18	8.85 to 10.54		
ZB	10	8.11	0.87	7.49 to 8.74	<0.0001 *	
ZN	10	6.90	0.75	6.36 to 7.44		
LD	10	14.61	1.44	13.59 to 15.64		

Note: * One-way ANOVA; Significant at *p*-value <0.05; SD: Standard Deviation; ZA: Air-abraded HTZ; ZB: Diamond abrasion HTZ; ZN: Untreated HTZ; LD: Lithium disilicate discs.

Table 3. Comparison of mean shear bond strength between groups of ceramic samples.

Groups		Mean Difference	Standard Error	<i>p</i> -value	95% CI of Mean Difference
ZA	ZB	1.58	0.489	0.01326 *	0.264 to 2.897
	ZN	2.8	0.489	<0.0001 *	1.479 to 4.112
	LD	-4.92	0.489	<0.0001 *	-6.236 to -3.603
ZB	ZN	1.21	0.489	0.07941	-0.102 to 2.532
	LD	-6.5	0.489	<0.0001 *	-7.816 to -5.183
ZN	ZN LD -7.71		0.489	<0.0001 *	-9.031 to -6.398

Note: * Tukeys post hoc test; Significant at p-value < 0.05, CI: Confidence interval; Standard Deviation; ZA: Air-abraded HTZ; ZB: Diamond abrasion HTZ; ZN: Untreated HTZ; LD: Lithium disilicate discs.

Table 4. Distribution of fracture types after subjecting to shear load.

Groups	N	Adhesive at Resin-dentin (%)	Adhesive at Resin-ceramic (%)	Cohesive (%)	Combined Fracture (%)
ZA	10	2 (20)	4 (40)	2 (20)	2 (20)
ZB	10	1 (10)	5(50)	1 (10)	3 (30)
ZN	10	0 (0)	6(60)	2 (20)	2 (20)
LD	10	9 (90)	0 (0)	0 (0)	1 (10)
Total	40	12(30)	15 (37.5)	5 (12.5)	8 (20)

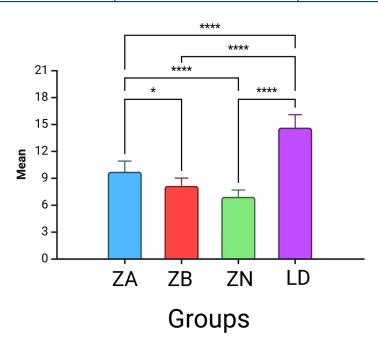
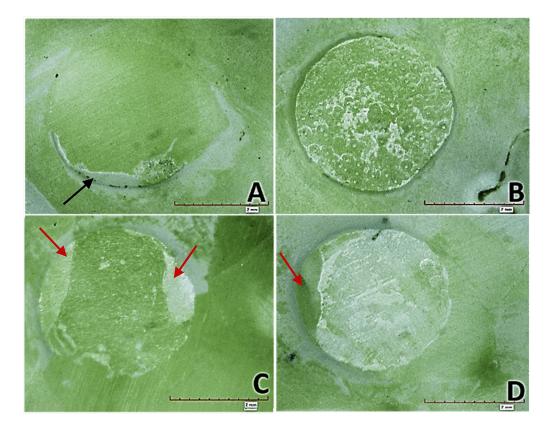



Fig. (3). Shear bond strength comparison in a bar graph among the groups.

Fig. (4). Representative digital microscopic images of dentin after fracture. (**A**) Adhesion fracture at the junction of luting resin and dentin showing resin cement (black arrow), (**B**) Adhesion fracture at the junction of luting resin and ceramic, (**C**) Cohesion fracture showing small craters (red arrow), (**D**) Combination fracture showing irregular craters (red arrow).

4. DISCUSSION

This study's distinctive addition is its emphasis on bonding HTZ to occlusal dentin, a substrate that more accurately simulates the intraoral circumstances for onlay restorations. Although several research studies have evaluated the shear bond strength of zirconia with different surface treatments, the majority of them have failed to include both the clinical substrate (occlusal dentin) and thermal aging modeling (thermocycling) in their methodologies. Our present work filled the gap by assessing several extrinsic surface modifications (combination of mechanical + chemical and chemical alone) on HTZ and quantifying their SBS values to occlusal dentin after thermocycling. The results provide significant insight into the long-term performance expectations of HTZ-based indirect restorations.

While our study did not experimentally assess various dentins, previous reports indicate that bond strength differs by dentin region, mostly owing to structural variations such as tubule density and intertubular dentin composition. For instance, elevated bond strengths are observed in superficial dentin, which has markedly lower values owing to enhanced permeability [24]. Furthermore, experiments comparing superficial, middle, and deep dentin have shown that bond strength diminishes with

increasing depth (from around 37 MPa in superficial dentin to around 21 MPa in deep dentin) [25].

Considering that occlusal dentin exhibits traits akin to middle dentin, including moderate tubule density and diminished permeability, our SBS findings for Group ZA (9.7 \pm 1.18 MPa) align with clinically relevant values identified in these dentin regions.

The bond strength of materials to tooth structure has been evaluated and compared using a variety of testing methods [26, 27]. The SBS test is widely used due to its simplicity, minimal sample preparation, quick procedure, and results [28]. Due to the absence of proper conditioning of dental hard tissue, self-adhesive cementation is simpler to handle and more effective than standard cementation composites [29] and hence used in this study. Thermocycling with temperature variations was performed to simulate the intraoral conditions and to assess the long-term SBS, which is a more reliable outcome with regard to the clinical setting [30].

Lithium disilicate had a strong SBS in this investigation, and none of the tested groups exceeded those values. This is most likely the result of hydrofluoric acid etching, which breaks down the glassy matrix and produces tiny surface defects and pits by selectively reacting with silicon dioxide. Therefore, the micromechanical

retention between the luting resin and the glass structure in the control group is improved, resulting in a stronger and longer-lasting bond [31].

In contrast to lithium disilicate ceramics, zirconia needs both mechanical and chemical preparation owing to its polycrystalline structure. In our investigation, the control group (LD) exhibited the greatest SBS, consistent with other findings [1, 32] that affirm the bondability of glass ceramics. The SBS of HTZ in Group ZA (9.7 \pm 1.18 MPa) neared clinically accepted levels and was significantly greater than that of untreated zirconia, which, when well processed, may provide performance similar to ceramics while exhibiting enhanced mechanical qualities, making it a formidable option for posterior restorations [33].

As opposed to traditional 3Y-TZP zirconia, HTZ materials (4Y-PSZ and 5Y-PSZ) possess elevated yttria concentrations, which improve translucency but diminish transformation toughening and surface reactivity. Recent comparative research by Silveira et al. (2022) assessed the bonding efficacy of resin cement before and after thermocycling across zirconia generations 3Y-TZP, 4Y-PSZ, and 5Y-PSZ. The research indicated that only 4Y-PSZ exhibited stable binding strength with aging, whereas both 3Y and 5Y variants had considerable declines after thermocycling [34]. This corresponds with our results in Group ZA, where the integration of mechanical and chemical pretreatment of HTZ produced much superior SBS upon thermocycling in comparison to untreated HTZ. These data underscore the critical need for dental practitioners to understand the behaviour of zirconia while choosing it in the treatment

The cleansing, activation, and roughening of the luting face of restoration are crucial preconditions for a strong and long-lasting chemical interaction. As far as zirconia is concerned, such chemical interaction can only be accomplished by light mechanical extrinsic modification with a blasting machine rather than chemical conditioning with hydrofluoric acid [29]. The purpose of the air particle abrasion process is to increase the surface area and the number of hydroxyl groups that are accessible for the 10-MDP to bond [35]. The bifunctional MDP monomer's phosphate ester group chemically attaches itself to the hydroxyl group of zirconia forming a Zr-oxyphosphate (Zr-O-P) chemical bond [29, 33].

Prior research demonstrated that a coating of zirconia primer is a relatively pragmatic approach to strengthening the link between zirconia and the luting resin when compared to air particle (50 μ m) abrasion using aluminum oxide [36, 37]. Application of a zirconia primer preceded by air abrasion was advantageous in improving the SBS [10, 17]. However, the large size of the air particles produced micro-cracks, which deteriorated the mechanical characteristics of zirconia [10, 38, 39]. The size of particles was chosen as 50 μ m in this study to increase the durability of the bond between zirconia and the resin cement. This study found that group ZA had the highest mean SBS, followed by groups ZB and ZN, and the mean difference was statistically significant (p-value < 0.05).

Therefore, our study confirmed the fact that the combined mechanical (air abrasion) and chemical (10-MDP) extrinsic modifications strengthened the bond of zirconia compared to chemical or mechanical treatment alone. Hence, the null hypothesis was completely rejected.

Zirconia adheres to the tooth in two stages: first, directly to the resin cement, and second, indirectly to the tooth surface through the resin cement [40]. The first junction between the zirconia and the luting resin is the weakest in clinical settings. Fractures that are due to poor bonding at the second junction between the luting resin and dentin are not because of zirconia, as the bonding of the resin cement has not failed with the HTZ but with the dentin. Having such non-significant test results usually represents that the link between the luting resin and the dentin is compromised. The maximum frequency of fracture for the experimental groups was observed at the weakest zirconia-resin cement interface (37.5%), while that of the control was at the resin-dentin interface (90%). However, the frequency of fracture at the weak interface is relatively less in group ZA, meaning that air abrasion has significantly improved the bond strength of HTZ to resin cement. Cohesive and combined fractures of samples represent the possible error in the polymerization of resin cements.

This research used a self-adhesive dual-cure resin cement for the luting technique, which incorporates 10-MDP monomer, recognized for its chemical affinity to zirconia. The cement was immediately applied to the prepared zirconia surface and positioned into occlusal dentin with moderate finger pressure, followed by light curing. This approach was selected for its clinical efficacy and less susceptibility to technique variations.

While the present work is confined to *in vitro* assessment, several longitudinal clinical investigations have shown that zirconia restorations adhered using resinbased luting agents exhibit consistent clinical results. Therefore, while our research provides laboratory data, it substantiates the long-term viability of these materials in clinical use.

4.1. Strengths and Limitations

The current study highlights that combined mechanical and chemical treatment has the potential to strengthen the bond of HTZ to occlusal dentin. Moreover, it includes both the resin-zirconia and resin-dentin interfaces in the experiment that closely simulates the intracoronal restoration. One of the limitations is that the results may vary in the oral environment during the clinical trials because of the external factors such as saliva, food, and masticatory forces. Use of thermo-mechanical ageing could have overcome this limitation. Moreover, the thickness of HTZ used in this study is not compatible with that of the actual restorations in the range of 0.5 mm to 1.0 mm.

CONCLUSION

Within the limitations of this *in vitro* study, extrinsic modifications of highly translucent zirconia (HTZ) significantly affected its bonding performance. In the presence

of ceramic primer, air-abraded HTZ showed the highest SBS (9.7 \pm 1.18 MPa), which is higher than diamond burabraded (8.11 \pm 0.87 MPa) and non-mechanically treated HTZ (6.9 \pm 0.75 MPa, p-value < 0.05). The control group involving lithium disilicate ceramic achieved the highest overall SBS. In the event of failure, the incidence of fracture was relatively less at the junction of air-abraded HTZ and luting resin (40%), indicating bond durability. These results highlight the effectiveness of combining mechanical and chemical pretreatments to optimize bonding with HTZ. Further, we encourage clinical trials to validate these results.

AUTHORS' CONTRIBUTIONS

The authors confirm contribution to the paper as follows: N.H.A.: Writing – review & editing, Conceptualization, Methodology; T.S.V.: Writing – original draft, Conceptualization, Methodology, Project administration, Investigation; H.F.A.: Formal Analysis, Methodology, Data Curatison; A.A.Y.: Formal Analysis, Methodology; W.H.H.: Formal Analysis, Methodology, Data Curation; M.M.A.M.: Writing – review & editing, Conceptualization, Methodology, Investigation; S.N.B.: Writing – review & editing, Visualization, Supervision, Validation; M.I.K.: Writing – review & editing, Supervision, Visualization, Validation. All authors have read and agreed to the published version of the manuscript.

LIST OF ABBREVIATIONS

SBS = Shear Bond Strength

HTZ = Highly Translucent Zirconia

MDP = 10-Methacryloyloxydecyl Dihyydrogen Phosphate

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This ethical approval (REC-45/05/891& CODJU-2316I dated November 5 and December 10, 2023, respectively) was provided by the Scientific Research Committee of Jazan University, Saudi Arabia.

HUMAN AND ANIMAL RIGHTS

All procedures performed in studies involving human participants were in accordance with the ethical standards of institutional and/or research committee and with the 1975 Declaration of Helsinki, as revised in 2013.

CONSENT FOR PUBLICATION

Forty freshly extracted human permanent molars due to periodontal reasons were collected from adults with informed consent between December 11, 2023, and February 5, 2024

AVAILABILITY OF DATA AND MATERIALS

The data and supportive information are available within the article.

FUNDING

None.

CONFLICT OF INTEREST

Dr. Mohmed Isaqali Karobari is the Co-Editor-in-Chief of the Open Dentistry Journal.

ACKNOWLEDGEMENTS

Declared none.

REFERENCES

- [1] Scaminaci Russo D, Cinelli F, Sarti C, Giachetti L. Adhesion to zirconia: A systematic review of current conditioning methods and bonding materials. Dent J 2019; 7(3): 74. http://dx.doi.org/10.3390/dj7030074 PMID: 31374820
- [2] Alrabeah G, Binhassan F, Al Khaldi S, et al. Effect of self-adhesive resin cement film thickness on the shear bond strength of lithium disilicate ceramic-cement-tooth triplex. Inorganics 2023; 12(1): 14. http://dx.doi.org/10.3390/inorganics12010014
- [3] Manziuc MM, Gasparik C, Negucioiu M, et al. Optical properties of translucent zirconia: A review of the literature. EuroBiotech Journal 2019; 3(1): 45-51. http://dx.doi.org/10.2478/ebtj-2019-0005
- [4] Zhang X, Liang W, Jiang F, et al. Effects of air-abrasion pressure on mechanical and bonding properties of translucent zirconia. Clin Oral Investig 2021; 25(4): 1979-88. http://dx.doi.org/10.1007/s00784-020-03506-y PMID: 32779015
- [5] Inokoshi M, Shimizu H, Nozaki K, et al. Crystallographic and morphological analysis of sandblasted highly translucent dental zirconia. Dent Mater 2018; 34(3): 508-18. http://dx.doi.org/10.1016/j.dental.2017.12.008 PMID: 29325861
- [6] Stawarczyk B, Keul C, Eichberger M, Figge D, Edelhoff D, Lümkemann N. Three generations of zirconia: From veneered to monolithic. Part I. Quintessence Int 2017; 48(5): 369-80. http://dx.doi.org/10.3290/j.qi.a38057 PMID: 28396886
- [7] Carrabba M, Keeling AJ, Aziz A, et al. Translucent zirconia in the ceramic scenario for monolithic restorations: A flexural strength and translucency comparison test. J Dent 2017; 60: 70-6. http://dx.doi.org/10.1016/j.jdent.2017.03.002 PMID: 28274651
- [8] Madfa AA, Al-Sanabani FA, Al-Qudami NH, Al-Sanabani JS, Amran AG. Use of zirconia in dentistry: An overview. Open Biomaterials Journal 2014; 5(1): 1-7. http://dx.doi.org/10.2174/1876502501405010001
- [9] Kessler A, Reichert T, Lindner S, Liebermann A, El Gezawi M, Kaisarly D. Influence of additive and subtractive zirconia and lithium disilicate manufacturing on tensile bond strength and surface topography. J Prosthet Dent 2024; 132(3): 623.e1-7. http://dx.doi.org/10.1016/j.prosdent.2024.04.002 PMID: 38853056
- [10] Shen D, Wang H, Shi Y, Su Z, Hannig M, Fu B. The effect of surface treatments on zirconia bond strength and durability. J Funct Biomater 2023; 14(2): 89. http://dx.doi.org/10.3390/ftb14020089 PMID: 36826888
- [11] Dimitriadis K, Moschovas D, Agathopoulos S. Microstructure and mechanical properties of zirconia stabilized with increasing Y₂ O ₃, for use in dental restorations. Int J Appl Ceram Technol 2023; 20(1): 350-9. http://dx.doi.org/10.1111/jjac.14241
- [12] Kern M. Bonding to oxide ceramics-Laboratory testing versus clinical outcome. Dent Mater 2015; 31(1): 8-14. http://dx.doi.org/10.1016/j.dental.2014.06.007 PMID: 25059831
- [13] Hill EE, Lott J. A clinically focused discussion of luting materials. Aust Dent J 2011; 56(s1): 67-76. http://dx.doi.org/10.1111/j.1834-7819.2010.01297.x PMID: 21564117
- [14] Scholz KJ, Tabenski IM, Vogl V, et al. Randomized clinical split-mouth study on the performance of CAD/CAM-partial ceramic crowns luted with a self-adhesive resin cement or a universal adhesive and a conventional resin cement after 39 months. J Dent 2021; 115: 103837.

- http://dx.doi.org/10.1016/j.jdent.2021.103837 PMID: 34624421
- [15] Torres CRG, Mailart MC, Ávila DMS, et al. Influence of glass ionomer-based luting cements on the clinical success of zirconia crowns: Randomized clinical trial. Oper Dent 2025; 50(2): 144-56. http://dx.doi.org/10.2341/24-066-C PMID: 39905803
- [16] Souza ROA, Valandro LF, Melo RM, Machado JPB, Bottino MA, Özcan M. Air-particle abrasion on zirconia ceramic using different protocols: Effects on biaxial flexural strength after cyclic loading, phase transformation and surface topography. J Mech Behav Biomed Mater 2013; 26: 155-63. http://dx.doi.org/10.1016/j.jmbbm.2013.04.018 PMID: 23746698
- [17] Qeblawi DM, Muñoz CA, Brewer JD, Monaco EA. The effect of zirconia surface treatment on flexural strength and shear bond strength to a resin cement. J Prosthet Dent 2010; 103(4): 210-20. http://dx.doi.org/10.1016/S0022-3913(10)60033-9 PMID: 20362764
- [18] Gomes AL, Castillo-Oyagüe R, Lynch CD, Montero J, Albaladejo A. Influence of sandblasting granulometry and resin cement composition on microtensile bond strength to zirconia ceramic for dental prosthetic frameworks. J Dent 2013; 41(1): 31-41. http://dx.doi.org/10.1016/j.jdent.2012.09.013 PMID: 23022106
- [19] Conejo J, Ozer F, Mante F, Atria PJ, Blatz MB. Effect of surface treatment and cleaning on the bond strength to polymerinfiltrated ceramic network CAD-CAM material. J Prosthet Dent 2021; 126(5): 698-702.
 - http://dx.doi.org/10.1016/j.prosdent.2020.08.016 PMID: 33121822
- [20] Abo El-Farag S. The impact of different cleaning protocols on resin bond strength to polymer-infiltrated ceramic material. Egypt Dent J 2021; 67(4): 3651-62. http://dx.doi.org/10.21608/edj.2021.91153.1759
- [21] Zortuk M, Bolpaca P, Kilic K, Ozdemir E, Aguloglu S. Effects of finger pressure applied by dentists during cementation of allceramic crowns. Eur J Dent 2010; 4(4): 383-8. http://dx.doi.org/10.1055/s-0039-1697857 PMID: 20922157
- [22] El-Sebaey H, Al-Zordk W, Sakrana A. Influence of resin cements on fracture resistance of lithium disilicatemonolithic ceramic restorations. IOSR Journal of Dental and Medical Sciences 2020; 19(8): 07-9. http://dx.doi.org/10.9790/0853-1908140709
- [23] Zavare FJ, Khosravani SR, Sabzivand M, Panahandeh N. effect of surface treatment with alkaline agents at two different temperatures on microshear bond strength of zirconia to composite resin. BioMed Res Int 2024; 2024(1): 1-5. http://dx.doi.org/10.1155/2024/7720286 PMID: 38577705
- [24] Kumari RV, Siddaraju K, Nagaraj H, Poluri RK. Evaluation of shear bond strength of newer bonding systems on superficial and deep dentin. J Int Oral Health 2015; 7(9): 31-5. PMID: 26435613
- [25] Singh K, Naik R, Hegde S, Damda A. Shear bond strength of superficial, intermediate and deep dentin in vitro with recent generation self-etching primers and single nano composite resin. J Int Oral Health 2015; 7(Suppl. 1): 28-32. PMID: 26225101
- [26] Yoshida K. Influence of alumina air-abrasion for highly translucent partially stabilized zirconia on flexural strength, surface properties, and bond strength of resin cement. J Appl Oral Sci 2020; 28: e20190371. http://dx.doi.org/10.1590/1678-7757-2019-0371 PMID: 32049135
- [27] Monteiro RV, dos Santos DM, Bernardon JK, De Souza GM. Effect of surface treatment on the retention of zirconia crowns to tooth structure after aging. J Esthet Restor Dent 2020; 32(7): 699-706. http://dx.doi.org/10.1111/jerd.12623 PMID: 32627364

- [28] Ismail AM, Bourauel C, ElBanna A, Salah Eldin T. Micro versus macro shear bond strength testing of dentin-composite interface using chisel and wireloop loading techniques. Dent J 2021; 9(12): 140. http://dx.doi.org/10.3390/dj9120140 PMID: 34940037
- [29] Stawarczyk B, Keul C, Eichberger M, Figge D, Edelhoff D, Lümkemann N. Three generations of zirconia: From veneered to monolithic. Part II. Quintessence Int 2017; 48(6): 441-50.

http://dx.doi.org/10.3290/j.qi.a38157 PMID: 28497132

- [30] Sadid-Zadeh R, Strazzella A, Li R, Makwoka S. Effect of zirconia etching solution on the shear bond strength between zirconia and resin cement. J Prosthet Dent 2021; 126(5): 693-7.
- resin cement. J Prosthet Dent 2021; 126(5): 693-7. http://dx.doi.org/10.1016/j.prosdent.2020.09.016 PMID: 33162113
- [31] Guarda GB, Correr AB, Gonçalves LS, et al. Effects of surface treatments, thermocycling, and cyclic loading on the bond strength of a resin cement bonded to a lithium disilicate glass ceramic. Oper Dent 2013; 38(2): 208-17. http://dx.doi.org/10.2341/11-076-L PMID: 22856682
- [32] Zhang Q, Yao C, Yuan C, et al. Evaluation of surface properties and shear bond strength of zirconia substructure after sandblasting and acid etching. Mater Res Express 2020; 7(9): 095403
 - http://dx.doi.org/10.1088/2053-1591/abb5c9
- [33] Elsisi IA, Nabil O, Amin SA. Evaluation of shear bond strength of CAD/CAM ultra-translucent zirconia and lithium disilicate ceramics bonded to enamel: An in vitro study. Int J Prosthodont Restor Dent 2024; 14(2): 86-93. http://dx.doi.org/10.5005/jp-journals-10019-1449
- [34] Silveira MPM, Ramos NC, Lopes GRS, Tribst JPM, Bottino MA. Bond strength between different zirconia-based ceramics and resin cement before and after aging. Coatings 2022; 12(10): 1601. http://dx.doi.org/10.3390/coatings12101601
- [35] Le M, Larsson C, Papia E. Bond strength between MDP-based cement and translucent zirconia. Dent Mater J 2019; 38(3): 480-9. http://dx.doi.org/10.4012/dmj.2018-194 PMID: 31105161
- [36] Reddy SM, Vijitha D, Deepak T, Balasubramanian R, Satish A. Evaluation of shear bond strength of zirconia bonded to dentin after various surface treatments of zirconia. J Indian Prosthodont Soc 2014; 14(1): 38-41. http://dx.doi.org/10.1007/s13191-012-0198-6 PMID: 24604996
- [37] Fathi A, Hashemi S, Tabatabaei S, Mosharraf R, Atash R. Adhesion to zirconia: An umbrella review. Int J Adhes Adhes 2023; 122: 103322. http://dx.doi.org/10.1016/j.ijadhadh.2023.103322
- [38] Bömicke W, Schwindling FS, Rammelsberg P, Rues S. Bond strength of milled and printed zirconia to 10-Methacryloyloxydecyl Dihydrogen Phosphate (10-MDP) resin cement as a function of ceramic conditioning, disinfection and ageing. Materials 2024; 17(9): 2159. http://dx.doi.org/10.3390/ma17092159 PMID: 38730965
- [39] Lima RBW, Silva AF, da Rosa WLO, Piva E, Duarte RM, De Souza GM. Bonding efficacy of universal resin adhesives to zirconia substrates: Systematic review and meta-analysis. J Adhes Dent 2023; 25: 51-62.
 - http://dx.doi.org/10.3290/j.jad.b3868649 PMID: 36744830 PMCID: PMC11734249
- [40] Miljkovic M, Dacic S, Mitic A, Petkovic D, Andjelkovic-Apostolovic M. Shear bond strength and failure modes of composite to dentin under different light-curing conditions. Polym Polymer Compos 2022; 30(1): 09673911221143203.
 - http://dx.doi.org/10.1177/09673911221143203