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Abstract:
Background:  Excessive  intake  of  fluoride  during  enamel  growth  and  development  can  impair  the  normal
physiological function of ameloblasts, resulting in the formation of dental fluorosis. However, little is known about the
function of miRNAs in the formation of dental fluorosis.

Aim: This study aimed to explore the effects of key miRNAs on the PI3K/AKT signaling pathway and ameloblasts
under high fluoride conditions.

Materials and Methods: LS8 cells were treated with NaF at concentrations of 0.4, 0.8, 1.6, 3.2, and 6.4 mmol/L for
24 h, and cell viability and apoptosis were measured using the CCK-8 assay and flow cytometry. The expression of
apoptosis-related proteins was detected by Western blotting. Transcriptome sequencing was performed on FS8 cells
after  treatment  with  1.6  and  3.2  mmol/L  NaF  for  24  h  to  identify  key  miRNAs  and  validate  them.  After  cell
transfection, the effect of miR-214-3p on ameloblasts and the PI3K/AKT signaling pathway was assessed.

Results and Discussion: NaF treatment significantly reduced the viability and accelerated the apoptosis of LS8
cells.  The  down-regulated  miRNAs  predicted  target  genes  that  were  most  enriched  in  the  PI3K/AKT  signaling
pathway,  and  the  most  critical  miRNA  was  miR-214-3p.  The  expression  levels  of  p-PI3K,  p-AKT,  and  Bcl-2  were
significantly up-regulated after overexpression of miR-214-3p in LS8 cells, while the expression of PI3K, AKT, and Bax
was significantly down-regulated, which was partially reversed by LY294002.

Conclusion:  Excess  fluoride  could  affect  the  morphology  of  ameloblast-like  cell  lines  and  induce  apoptosis.
Overexpression of miR-214-3p inhibited NaF-induced apoptosis in LS8 cells by regulating the PI3K/AKT signaling
pathway, inhibiting its phosphorylation, down-regulating the Bax protein, and up-regulating the Bcl-2 protein.

Keywords: Dental fluorosis, Ameloblasts, miR-214-3p, PI3K/AKT signaling pathway, Apoptosis, Fluoride.

© 2024 The Author(s). Published by Bentham Open.
This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public
License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license
permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are
credited.

*Address correspondence to this author at the Key Laboratory of Oral Disease Research, School of Stomatology, Zunyi
Medical University, Zunyi 563000, China; E-mail: baiguohui1228@126.com
#These authors contributed equally to this work

Cite as: Liu X, Fu N, Chen B, Wang Y, Shu X, Liu J, Bai G, Tian Y. MiR-214-3p Regulates Apoptosis of Ameloblasts under
Excessive Fluoride via PI3K/AKT Signaling Pathway. Open Dent J, 2024; 18: e18742106290670.
http://dx.doi.org/10.2174/0118742106290670240314063143

Received: December 05, 2023
Revised: February 08, 2024

Accepted: February 26, 2024

Send Orders for Reprints to
reprints@benthamscience.net

1. INTRODUCTION
Fluoride  is  an  element  widely  present  in  the

environment. Long-term excessive intake of fluoride could
lead to chronic fluorosis. Teeth are one of the main target

organs  for  endemic  fluorosis,  and  dental  fluorosis  is
caused  by  enamel  hypoplasia  due  to  excessive  fluoride
intake  during  tooth  development  and  formation  [1,  2].
Clinically,  dental  fluorosis  manifests  as  yellow  or  dark
brown  chalky  enamel,  with  severe  tooth  defects  often
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accompanied  by  changes  in  tooth  morphology  [3].  The
occurrence  of  dental  fluorosis  is  regional  and  usually
occurs  in  populations  born  and  raised  in  areas  of  high
fluoride [4]. China is one of the most severely fluoridated
countries in the world, and the overall prevalence rate of
dental  fluorosis  in  China  in  2020  was  about  23.6%  [5].
Guizhou  province  is  a  high-prevalence  area  of  dental
fluorosis  in  China.  Although  the  prevalence  of  dental
fluorosis in Guizhou province has been on the decline with
the  implementation  of  energy  renovation  and  endemic
disease  control  policies  in  recent  years  [6],  the  damage
and destruction of dental enamel by fluoride is irreversible
and leaves long-term cumulative effects on the health of
patients.  Studies  have  shown  that  patients  with  dental
fluorosis are more susceptible to periodontitis and dental
caries [7, 8].

The differentiation and development of ameloblasts are
key  to  enamel  formation,  which  occurs  via  three  main
functional stages: pre-secretory, secretory, and maturation
[9,  10].  During  the  pre-secretory  phase,  changes  in  the
polarity  of  ameloblasts  stimulate  their  differentiation,
leading  to  an  obvious  increase  in  organelles  involved  in
protein  synthesis  in  preparation  for  the  secretion  of  the
enamel  matrix.  During  the  secretory  phase,  ameloblasts
become highly columnar and highly polarized, with Tomes’
processes extending to the head of the enamel matrix to
help  ameloblasts  synthesize  and  secrete  enamel  matrix
proteins (EMPs), thus increasing the thickness of enamel
volume  and  making  it  develop  a  necessary  proteolytic
activity. During the maturation phase, ameloblasts secrete
matrix metalloproteinase to degrade matrix proteins. With
the thickening of the enamel layer and the mineralization
process, the hardness of the enamel increased, forming a
highly mineralized hard tissue. Excessive intake of fluoride
can affect the normal physiological function of ameloblasts
during enamel development and formation, leading to the
development  of  dental  fluorosis  [11,  12].  Therefore,  it  is
important to elucidate the mechanism of fluoride's effect
on ameloblasts for the prevention and treatment of dental
fluorosis.

MicroRNAs  (miRNAs)  are  small  non-coding  RNA
molecules  [13]  that  play  a  regulatory  role  in  the
occurrence  and  development  of  many  human  diseases,
such  as  retinal  diseases,  neurodegenerative  diseases,
cardiovascular diseases,  and skeletal  fluorosis,  and have
gradually  been  recognized  as  potential  biomarkers  for
disease  diagnosis  and  prognosis  [14].  Tooth  growth  is
driven by adult epithelial stem cells, which first produce
ameloblasts,  and  then  ameloblasts  produce  enamel.
MicroRNAs  play  an  important  role  in  these  processes.
Jevnaker and Osmundsen identified eight miRNAs involved
in  tooth  formation  using  miRNA  microarrays,  of  which
miR-31  was  upregulated  during  molar  morphogenesis
[15].  Cao  et  al.  discovered  that  miR-200c/141  knockout
mice exhibited defects in enamel formation [16]. However,
little  is  known  about  the  function  of  miRNAs  in  the
formation  of  dental  fluorosis.

In this study, we measured cell viability and apoptosis
by treating FS8 cells with different concentrations of NaF

and then selected FS8 cells treated with NaF (1.6 and 3.2
mmol/L) for 24 h for transcriptome sequencing to identify
key  miRNAs.  Through  cell  transfection,  we  explored  the
effects of key miRNAs on the PI3K/AKT signaling pathway
and ameloblasts under high fluoride conditions, providing
potential  insights  into  the  prevention  and  treatment  of
dental fluorosis.

2. METHODS

2.1.  Fluorine  Exposure  and  Morphological
Observation of Cells

LS8  cells  (kindly  provided  by  Professor  Malcolme
Snead  of  the  University  of  Southern  California  and
Professor Xiaohong Duan of  the Fourth Military Medical
University)  were  inoculated  in  the  medium  (1×104
cells/mL)  to  a  density  of  50%.  Afterward,  0.42  g  of  NaF
was added to 100 mL of pure water and then mixed and
diluted to 0.4, 0.8, 1.6, 3.2, and 6.4 mmol/L. The diluted
solutions were added to the medium inoculated with cells
and incubated for 24 h, 48 h, and 72 h, respectively. No
NaF  treatment  was  used  in  the  blank  group.  The  cell
morphology  was  observed  under  a  microscope.

2.2. Cell Viability Assay
Cell viability was assessed to detect the effect of NaF

on LS8 cells. For this purpose, 100 μL LS8 cell suspension
(1×104 cells/mL) was seeded in a 96-well plate at 37°C for
24 h and then treated with 100 μL NaF solution (0.4, 0.8,
1.6,  3.2,  and  6.4  mmol/L)  for  24  h,  48  h,  and  72  h,
respectively. Afterward, 10 μL of CCK8 reagent was added
to  each  well,  and  the  absorbance  of  each  well  was
measured at 450 nm using a microplate reader after 2 h of
incubation.

2.3. Cell Apoptosis Assay
For cell apoptosis analysis, LS8 cells were treated with

NaF (0.4, 0.8, 1.6, 3.2, and 6.4 mmol/L) for 24 h, digested
with EDTA-free trypsin and centrifuged for 5 min at 1000
rpm. Cells were then incubated with 5 μL Annexin V-FITC
and 10 μL PI for 10 min and then resuspended in 300 μL
1X binding buffer. The stained cells were measured using
a  FACS  Calibur  Flow  Cytometer  and  analyzed  by
CellQuest.

2.4. MicroRNA Extraction and Library Preparation
LS8 cells were treated with NaF (1.6 and 3.2 mmoL/L)

for 24 h, and the untreated cells were used as the blank
group. The cell precipitates were collected and added to
TRIzol  for  full  lysis.  MicroRNAs  were  extracted  using
mirPremier.  The  method  of  library  preparation  was
described  by  Nirvabi  et  al.  [17].

2.5. MicroRNA Sequencing and Data Analysis
MiRNA  libraries  were  sequenced.  To  improve  the

quality of the sequencing reads, we excluded the following
types of reads: (i) reads have no more than 4 bases with a
base mass less than 10 and no more than 6 bases with a
base  mass  less  than  13;  (ii)  reads  with  contaminated
connector; (iii) reads that insert fragments too long; and
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(iv) Reads with high content of unknown base N. We used
Mus_musculus  (GCF_000001635.26_GRCm38.p6)  as  the
reference  genome.  All  clean  reads  were  mapped  to  this
reference genome by Bowtie2 software [18].

Differential  expression  of  miRNAs  was  calculated  by
DEGseq software. The significance (P-value) of each gene
was  adjusted  using  Q-values  to  screen  for  differentially
expressed  genes  with  Q-values  <0.001  and  |log2  (fold
change)|>2  considered  as  significant.  Differentially
expressed miRNAs were screened between the two NaF-
treated groups and the blank group, respectively, and the
intersection of  the two differential  results  was taken for
subsequent  analysis.  Kyoto  Encyclopedia  of  Genes  and
Genomes (KEGG) enrichment analysis of candidate target
genes was performed by the R-package clusterProfiler.’

2.6.  Validation  of  microRNA-Sequenced  Data  with
Reverse Transcription-quantitative PCR

RNA  was  extracted  by  the  Total  RNA  Extraction  Kit
and  then  miRNA  first-strand  cDNA  synthesis  was
performed.  The  obtained  cDNA  product  was  diluted  50-
fold and used as a template for subsequent experiments.
RT-qPCR  experiment  was  conducted  by  the  miRNA  first

strand  cDNA  synthesis  kit  (Shanghai  Shengong
Bioengineering  Co.,  Ltd.).  The  primers  used  for  the  RT-
qPCR are listed in Table 1.

2.7. Cell Transfection
MiR-214-3p  mimic  (5’-ACAGCAGGCACAGACAGGCAG

T-3’) and miR-NC were purchased from RiboBio Co., Ltd.
LS8 cells were cultured on a 6-well plate and divided into
a blank group, NaF group, NaF+miR-214-3p mimic group,
NaF+miR-214-3p mimic NC group, and NaF+miR-214-3p
mimic+LY294002  group.  When  the  cell  density  grew  to
about  40%  confluence,  the  cells  were  transfected  by
miR-214-3p  mimic  for  24  hours.  RNA  samples  were
collected,  and  RT-qPCR  was  performed.

2.8. Western Blotting
Proteins were extracted from LS8 cells, processed by

SDS-PAGE  and  transferred  to  a  PVDF  membrane.  After
being blocked by 5% defatted milk for 2 h, the membrane
was  incubated  with  the  primary  antibodies  (Cambridge,
MA,  USA),  anti-PI3K,  anti-p-PI3K,  anti-AKT,  anti-p-AKT,
anti-Bcl-2,  anti-Bax,  and  anti-β-actin  overnight  and  with
the  secondary  antibody  conjugated  with  horseradish
peroxidase  (Rockland,  USA)  for  1  h.

Table 1. The primers used for the RT-qPCR.

Primer Sequence (5’- 3’)

miR-21a-3p CAACAGCAGTCGATGGGCTGTC
miR-324-5p CGCATCCCCTAGGGCATTGGTGT
miR-3110-5p TTCTGCCTCCCCTGAAGGCTC
miR-574-5p TGAGTGTGTGTGTGTGAGTGTGT
miR-210-5p AGCCACTGCCCACCGCACACTG
miR-214-3p ACAGCAGGCACAGACAGGCAGT

Fig. (1). Effects of different concentrations of NaF on the morphology of LS8 cells. (A) LS8 cells were treated with NaF (0.4, 0.8, 1.6, 3.2,
and 6.4 mmol/L) for 24h. (B) LS8 cells were treated with NaF (0.4, 0.8, 1.6, 3.2, and 6.4 mmol/L) for 48 h. (C) LS8 cells were treated with
NaF (0.4, 0.8, 1.6, 3.2, and 6.4 mmol/L) for 72 h. Scale bars represent 200 μm. Magnification, 20×.
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2.9. Statistical Analysis
GraphPad  Prism  8.0  and  SPSS  18.0  software  were

used  for  statistical  analysis.  The  measurement  data  are
expressed  as  mean  ±  standard  deviation  (mean  ±  SD).
Statistical  differences  between  the  two  groups  were
determined  using  Student's  t-test.  One-way  ANOVA,
followed  by  Tukey's  post  hoc  test,  was  used  for
comparisons between >2 groups. A p-value of <0.05 was
considered  statistically  significant.  All  results  were
reproduced  in  at  least  three  independent  experiments.

3. RESULTS

3.1.  NaF  Disrupted  the  Normal  Morphology  of  LS8
Cells

Under normal growth conditions, the growth cycle of
ameloblasts  was  about  48  hours,  and  their  shape  was
fusiform  or  polygonal,  with  closely  connected  cells
arranged in a cobblestone pattern. LS8 cells were treated
with NaF (0.4, 0.8, 1.6, 3.2, and 6.4 mmol/L) for 24 h, 48
h, and 72 h, respectively. Compared with the blank group,
the cells in the 0.4 and 0.8 mmoL/L concentration groups
showed no significant changes in morphology at 24 h (Fig.
1A).  The  cells  in  the  1.6  and  3.2  mmoL/L  concentration
groups became loose from each other and showed visible
cell crumpling. The cells in the 6.4 mmoL/L concentration
group even showed partial cell death. The same trend was
observed at the two other time points (48 h and 72 h) (Fig.
1B,  C).  We also observed that the cells  treated with the

same  concentration  of  NaF  showed  more  pronounced
changes in cell morphology with increasing treatment time
compared to the blank group (Fig. 1).

3.2. NaF Inhibited the Viability of LS8 Cells
The CCK-8 assay revealed that the inhibitory effect on

cell  viability  was  stronger  with  increasing  NaF
concentration  at  the  same  time  point  (Fig.  2A-D).
Similarly,  the  longer  the  treatment  time  after  the  same
NaF concentration,  the  stronger  the  inhibitory  effect  on
cell  viability  (Fig.  2A  and  Table  S1).  The  above  results
indicated  that  NaF  treatment  could  significantly  reduce
the viability of LS8 cells.

3.3.  NaF  Induced  Apoptosis  of  LS8  Cells  by
Increasing Caspase-3 and Bax and Decreasing Bcl-2
Levels

The  results  of  flow  cytometry  analysis  revealed  that
after  24  h  of  NaF  treatment,  there  was  no  significant
difference in the apoptosis rate between the 0.4 and 0.8
mmol/L  NaF groups  (Cell  apoptosis  rates:  7.01  ± 0.59%
and 7.91 ± 0.49%, P > 0.05) compared to the blank group
(Cell  apoptosis  rate:  6.06  ±  1.2%),  whereas  NaF  at
concentrations  of  1.6,  3.2  and  6.4  mmol/L  significantly
induced cell apoptosis (Cell apoptosis rates: 39 ± 2.63%,
58.2 ± 0.1% and 68.97 ± 1.47%, P < 0.05) (Fig. 3A). The
above  results  indicated  that  NaF  treatment  could
significantly  accelerate  the  apoptosis  of  LS8  cells.

Fig. 2 contd.....



MiR-214-3p Regulates Apoptosis of Ameloblasts 5

Fig. 2 contd.....
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Fig. (2). The relationship between the concentration of NaF and cell viability. (A) Different concentrations of NaF (0.4, 0.8, 1.6, 3.2, and
6.4 mmol/L) significantly reduced the viability of LS8 cells when treated for 24 h, 48 h, and 72 h, respectively. (B) The concentration of
NaF was negatively correlated with cell viability at 24 h. (C) The concentration of NaF was negatively correlated with cell viability at 48 h.
(D) The concentration of NaF was negatively correlated with cell viability at 72 h. The asterisk represents a significant difference between
the NaF group and the blank group when treated for 24 h, *P < 0.05. Octothorpe represents a significant difference between the NaF
group and blank group when treated for 48 h, #P < 0.05. The triangle represents a significant difference between the NaF group and the
blank group when treated for 72 h, ΔP < 0.05.

Fig. 3 contd.....
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Fig. (3). Different concentrations of NaF (0.4, 0.8, 1.6, 3.2, and 6.4 mmol/L) induced apoptosis of LS8 cells by increasing Caspase3 and
Bax and decreasing Bcl-2 levels. (A) Flow cytometry results. (B) The apoptosis rate of LS8 cells and the expression of Caspase3, Bax,
Bcl-2, and the ratio of Bax to Bcl-2. (C) Western blot result. *P < 0.05.

We  further  determined  the  levels  of  apoptosis-related
proteins. The results revealed that the expression of the pro-
apoptotic  factors  Caspase3  and  Bax  was  increased  after
treatment  with  different  concentrations  of  NaF,  while  the
expression  of  the  apoptosis-inhibiting  factor  Bcl-2  was
decreased (Fig. 3B, C and Table S2). The differences in the
expression of Caspase3, Bax, and Bcl-2 were not significant
(P  >  0.05)  at  low  NaF  concentrations  (0.4/0.8  mmol/L)
compared to the blank group, while the differences became

significant  (P  <  0.05)  at  high  NaF concentrations  (1.6,  3.2
and  6.4  mmol/L).  In  addition,  Bax  can  form  a  heterodimer
with  Bcl-2,  thereby  inhibiting  Bcl-2  activity  and  promoting
the occurrence of apoptosis. We examined the ratio of Bax to
Bcl-2 and found that the ratio increased with increasing NaF
concentrations (Fig. 3B, C and Table S2). The above results
suggested  that  higher  NaF  concentrations  lead  to  more
obvious  apoptosis.
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3.4. Detection of MicroRNAs in LS8 Cells
In the above results, we found a significant difference

between the results at high NaF concentrations (1.6, 3.2,
and  6.4  mmol/L)  compared  to  the  blank  group,  but  the
number of cells with activity was low at a concentration of
6.4 mmol/L. We finally selected NaF-treated cells (1.6 and
3.2  mmol/L)  for  24  h  for  transcriptome  analysis.
Transcriptome analysis was carried out in triplicate for all
three groups, and a total of 9 cDNA libraries, named C (1,
2, 3), T1 (1, 2, 3), and T2 (1, 2, 3), were constructed and
sequenced.

After  filtering  the  low-quality  reads,  the  number  of
clean reads obtained per sample ranged from 20,759,412
to  22,090,808  (Table  S3).  We  performed  a  comparative

analysis between the 1.6 and 3.2 mmol/L NaF groups and
the  blank  group  to  screen  for  93  and  128  significantly
differentially  expressed  genes,  respectively.  The
intersection  of  these  two  results  was  taken,  resulting  in
the  identification  of  30  up-regulated  and  30  down-
regulated  miRNAs  (Fig.  4A,  B).  We  further  performed
target gene prediction for up-regulated miRNAs and down-
regulated  miRNAs  and  obtained  1,175  and  1,345  target
genes,  respectively.  KEGG  enrichment  analysis  of  these
candidate  target  genes  showed  that  the  target  genes
predicted by up-regulated miRNAs were most significantly
enriched  in  the  Rap1  signaling  pathway  (Fig.  4C),  and
those  predicted  by  down-regulated  miRNAs  were  most
significantly enriched in the PI3K/AKT signaling pathway
(Fig. 4D).

Fig. 4 contd.....
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Fig. (4). Detection of MicroRNAs in LS8 cells. (A) The number of up-regulated miRNAs in T1 and T2. (B) The number of down-regulated
miRNAs in T1 and T2. (C) KEGG enrichment diagram of up-regulated miRNA predicted target genes. (D) KEGG enrichment diagram of
down-regulated miRNA predicted target genes.

3.5.  Analysis  of  Target  Network  Interaction  and
Verification of Analysis with RT-qPCR

Target  network  interaction  analysis  between  the  up-
regulated miRNA and target genes in the Rap1 signaling
pathway showed that miR-3110-5p was in the center of the

network  graph  and  had  the  largest  number  of  node
connections (Fig. 5A). Target network interaction analysis
between the down-regulated miRNA and the target genes
in  the  PI3K/AKT  signaling  pathway  showed  that
miR-214-3p  was  in  the  center  of  the  network  graph  and
had the largest number of node connections (Fig. 5B).



10   The Open Dentistry Journal, 2024, Vol. 18 Liu et al.

Fig. 5 contd.....
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Fig. (5). Analysis of target network interaction and verification of analysis with RT-qPCR. (A) Interaction diagram of target gene network
of up-regulated miRNAs. (B) Interaction diagram of target gene network of down-regulated miRNAs. (C) The results of RT-qPCR validate
different miRNAs (up-regulated: miR-324-5p and miR-21a-3p; down-regulated: miR-210-5p and miR-574-5p), respectively. *P < 0.05.

Fig. 6 contd.....
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Fig. (6). Overexpression of miR-214-3p inhibited NaF-induced apoptosis in LS8 cells by regulating the PI3K/AKT signaling pathway. (A)
The expression levels of miR-214-3p were significantly downregulated in cells transfected with NaF, NaF+miR-214-3p mimic NC, and
NaF+miR-214-3p mimic compared to the blank group. The asterisk represents a significant difference between the NaF, NaF+miR-214-3p
mimic NC, NaF+miR-214-3p mimic groups, and the blank group, *P < 0.05. Octothorpe represents a significant difference between the
NaF, NaF+miR-214-3p mimic NC groups and the NaF+miR-214-3p mimic group, #P < 0.05. (B) Western blot result. (C) The expression of
PI3K,  AKT,  p-PI3K,  p-AKT,  Bax,  and  Bcl-2  in  the  blank  group,  NaF  group,  NaF+miR-214-3p  mimic  group,  and  NaF+miR-214-3p
mimic+LY294002 group. The asterisk represents a significant difference between the NaF, NaF+miR-214-3p mimic, NaF+miR-214-3p
mimic+LY294002  groups,  and  the  blank  group,  *P  <  0.05.  Octothorpe  represents  a  significant  difference  between  the  NaF,
NaF+miR-214-3p  mimic+LY294002  groups  and  the  NaF+miR-214-3p  mimic  group,  #P  <  0.05.

Apart  from  miR-3110-5p  and  miR-214-3p,  we  also
selected the 2 miRNAs with the highest number of  node
connections  (up-regulated:  miR-324-5p  and  miR-21a-3p;
down-regulated:  miR-210-5p  and  miR-574-5p)  for
validation, respectively. Compared with the blank group,
the  expression  of  miR-3110-5p,  miR-324-5p,  and
miR-21a-3p were significantly up-regulated (P  < 0.05) in
the  1.6  and  3.2  mmol/L  NaF  groups,  whereas  the
expression  of  miR-214-3p,  miR-210-5p,  and  miR-574-5p
were significantly down-regulated (P  < 0.05), which was
consistent with the sequencing results (Fig. 5C and Table
S4).  It  has  been  shown  that  the  PI3K/AKT  signaling
pathway  plays  an  important  role  in  the  regulation  of
apoptosis,  and PI3K was confirmed to  be a  direct  target

gene of miR-214-3p [19]. Combining the above results in
this  study,  we  selected  miR-214-3p  to  investigate  its
potential  mechanism  in  the  apoptosis  of  ameloblasts
induced  by  excessive  fluoride.

3.6.  Overexpression  of  miR-214-3p  inhibited  NaF-
induced  apoptosis  in  LS8  cells  by  regulating  the
PI3K/AKT  Signaling  Pathway

To further investigate the effect of miR-377-3p on the
apoptosis  of  LS8  cells  under  NaF  treatment,  LS8  cells
were  transfected  with  NaF,  NaF+miR-NC,  NaF+miR-
214-3p mimic, or NaF+miR-214-3p mimic+LY294002. RT-
qPCR  analysis  revealed  that  the  expression  level  of
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miR-214-3p  was  significantly  up-regulated  in  cells
transfected with NaF+miR-214-3p mimic compared to the
NaF  group  and  NaF+miR-214-3p  mimic  NC  group  (Fig.
5A), indicating successful transfection of the miR-214-3p
mimic.  In  addition,  the  expression  levels  of  miR-214-3p
were significantly downregulated in cells transfected with
NaF,  NaF+miR-NC,  and  NaF+miR-214-3p  mimic
compared to  the  blank  group,  indicating  that  NaF could
inhibit miR-214-3p expression to some extent (Fig. 6A).

Subsequently,  Western  blot  experiments  were
performed and the results showed that the expression of
PI3K, AKT, and the pro-apoptosis protein Bax in the NaF
group was significantly increased, while the expression of
p-PI3K,  p-AKT,  and  anti-apoptosis  protein  Bcl-2  was
significantly decreased (P < 0.05) compared to the blank
group,  indicating  that  excessive  fluoride  could  promote
apoptosis via the PI3K/AKT signaling pathway (Fig. 6B, C
and  Table  S5).  The  expression  of  PI3K,  AKT,  and  pro-
apoptotic  protein  Bax  was  significantly  decreased in  the
NaF+miR-
214-3p mimic group compared to the NaF group, while the
expression  of  p-PI3K,  p-AKT,  and  anti-apoptotic  protein
Bcl-2  was  significantly  increased  (P  <  0.05),  indicating
that miR-214-3p could inhibit NaF-induced cell apoptosis
by regulating the PI3K/AKT signaling pathway (Fig. 6B, C,
Table  S5).  When  cells  were  transfected  with
NaF+miR-214-3p  mimic+PI3K  inhibitor  (LY294002),  the
expression  of  PI3K,  AKT,  and  pro-apoptosis  protein  Bax
was  increased  and  the  expression  of  p-PI3K,  p-AKT  and
anti-apoptosis  protein  Bcl-2  was  decreased  (P  <  0.05),
further validating the above results (Fig. 6B, C, Table S5).
These results  suggested that  miR-214-3p overexpression
may inhibit the NaF-induced apoptosis of LS8 cells via the
PI3K/AKT  signaling  pathway  and  thereby  have  a
preventive  and  therapeutic  effect  on  dental  fluorosis.

4. DISCUSSION
Excess  fluoride  affects  the  normal  mineralization  of

tooth  enamel,  resulting  in  the  formation  of  dental
fluorosis. The main feature of dental fluorosis is damage to
the enamel, which not only affects the appearance but also
has  a  negative  psychological  impact  on  the  patient.  A
growing  number  of  research  works  have  revealed  the
important role of miRNAs in many diseases, but few have
revealed the effects of miRNAs on dental fluorosis. In this
study,  we  found  that  NaF  treatment  could  significantly
reduce  the  viability  of  LS8  cells  and  accelerate  the
apoptosis of LS8 cells, and further explored the effects of
key  miRNAs  on  PI3K/AKT  signaling  pathway  and
ameloblasts  under  high  fluoride  conditions,  providing
potential  insights  into  the  prevention  and  treatment  of
dental fluorosis.

Studies have reported that excessive intake of fluoride
during the growth and development of enamel can impair
the normal physiological function of ameloblasts, resulting
in the formation of dental fluorosis [20-22]. In this study,
LS8  cells  were  treated  with  different  concentrations  of
NaF.  Consistently,  our  results  confirmed  that  NaF
treatment  significantly  reduced  the  viability  and

accelerated  the  apoptosis  of  LS8  cells.
In this study, FS8 cells were treated with NaF (1.6 and

3.2  mmol/L)  for  24  h.  The  most  critical  miRNA  was
miR-214-3p,  which  was  screened  by  transcriptome
sequencing  analysis.  MiR-214-3p  has  been  reported  to
play a key role in skeletal disorders [23]. Cao et al. found
that  a  decrease  in  miR-214-3p  promoted  chondrocyte
apoptosis and aggravated the progression of osteoarthritis
by activating the NF-kB pathway [24]. Teng et al. revealed
that miR-214-3p inhibited the β-catenin signaling pathway,
leading to delayed fracture healing [25]. Wang et al. found
that  miR-214-3p  could  regulate  the  Wnt/β-catenin
signaling pathway by binding to the 3′-UTR of β-catenin to
reduce  the  mRNA  and  protein  levels  of  β-catenin,  thus
contributing to the inhibition of osteogenic differentiation
[26].  Furthermore,  studies  have  shown  that  oxidative
stress damage is an important pathogenic factor in dental
fluorosis.  The Nrf2 signaling pathway plays a regulatory
role  by  activating  the  expression  of  various  intracellular
antioxidant  enzymes  [27,  28].  The  miR-214-3p  promoter
was found to bind to Nrf2, and forsythoside-β could inhibit
miR-214-3p levels by activating Nrf2, thereby alleviating
inflammatory  osteoporosis  [29].  The  TGF-β/BMP/Smad
signaling pathway also plays a regulatory role in enamel
development  and  dental  fluorosis  formation.  BMP  is  the
most important subfamily of the TGF-β superfamily and is
involved in the formation of bone and tooth tissues. Smad
is an important downstream regulator of BMP. Excessive
fluoride could decrease the expression of TGF-β1, BMP2,
and Smad4 in ameloblasts and inhibit the proliferation and
differentiation  of  ameloblasts  and  the  synthesis  and
secretion  of  the  matrix.  MiR-214-3p  could  inhibit  the
BMP/Smad signaling pathway and delay fracture healing
in osteoporotic fracture rats [30]. The results revealed that
excessive  fluoride  induced  the  down-regulation  of
miR-214-3p. Moreover, KEGG enrichment analysis showed
that miR-214-3p might be a key miRNA of  the PI3K/AKT
signaling pathway. Thus, we hypothesized that excessive
fluorine  might  induce  ameloblast  apoptosis  via  the
regulation  of  the  PI3K/AKT  signaling  pathway  by
miR-214-3p,  and,  therefore,  we  performed  subsequent
experimental  validation.

It  has  been  shown  that  the  PI3K/AKT  signaling
pathway  is  closely  related  to  apoptosis,  and  PI3K  was
confirmed to be a direct target gene of miR-214-3p [19].
The  PI3K/AKT signaling  pathway  plays  a  key  role  in  the
signal  transduction  of  various  growth factors,  cytokines,
and  extracellular  matrix,  thereby  affecting  cell  survival
and  apoptosis  [31,  32].  PI3K  is  a  phosphatidylinositol
kinase  that  phosphorylates  the  third  hydroxyl  of  the
inositol ring. AKT, a serine/threonine protein kinase, is a
major  downstream  target  of  PI3K,  controlling  cell
proliferation, apoptosis, and cell cycle [33]. When PI3K is
stimulated and activated by various extracellular signals,
it  catalyzes  phosphatidylinositol  diphosphate  to  produce
phosphatidylinositol 3,4,5-triphosphate, which then acts as
a second messenger in the cell to bind and activate AKT
[34, 35]. The activation of AKT in vivo and in vitro depends
on  phosphorylation.  When  the  phosphorylation  of  the
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PI3K/AKT  signaling  pathway  is  enhanced,  it  inhibits
apoptosis, and when the phosphorylation is weakened, the
inhibition of apoptosis is also reduced. The proteins Bcl-2
and  Bax  are  critical  in  the  apoptotic  process  [36].  The
Bcl-2  determines  to  some  extent  whether  cells  undergo
apoptosis or survive [37]. Bax can form a heterodimer with
Bcl-2, thereby inhibiting Bcl-2 activity and promoting the
occurrence of apoptosis. In this study, the results showed
that  the  phosphorylation  levels  of  PI3K/AKT  signaling
pathway-related  proteins  p-PI3K  and  p-AKT  and  the
expression  level  of  anti-apoptotic  protein  Bcl-2  were
significantly up-regulated following the overexpression of
miR-214-3p  in  LS8  cells,  while  the  expression  of  PI3K,
AKT,  and  pro-apoptotic  protein  Bax  was  significantly
down-regulated,  suggesting  that  miR-214-3p  over
expression  may  inhibit  phosphorylation  and  induce  the
NaF-induced  apoptosis  of  LS8  cells  via  the  PI3K/AKT
signaling  pathway  and  Bax  and  Bcl-2.  To  further  verify
whether  the  PI3K/AKT  pathway  is  involved  in  apoptosis
under  the  influence  of  excessive  intake  of  fluoride,  we
selected LY294002 to inhibit PI3K function and found that
those  effects  mentioned  above  were  largely  reversed  by
LY294002, thus further confirming the above findings.

CONCLUSION
The  findings  of  this  study  suggested  that  excessive

fluoride could affect the typical morphology of ameloblasts
and induce apoptosis. Moreover, miR-214-3p was found to
play an important role in inhibiting cell apoptosis induced
by excessive fluoride by targeting the PI3K/AKT signaling
pathway,  inhibiting  its  phosphorylation,  down-regulating
Bax  proteins,  and  up-regulating  Bcl-2  proteins.  These
findings may provide new perspectives for basic research
on  dental  fluorosis  and  offer  more  effective  targets  and
strategies  for  clinical  diagnosis,  treatment,  and
prevention.
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