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Abstract:

Background:

Portland cement has promisingly been utilized for the reconstruction of root perforation and bone defects, although its key drawbacks, including
low mechanical properties and radiopacity as well as long setting time, necessitate pragmatic modifications.

Objective:

The main objective of this review was an overview of portland cement as a root repair material, its applications and various modifications.

Methods:

The electronic search of the literature was done on the Pubmed and Google Scholar databases with the keywords of Portland cement, carbon
nanotube, graphene oxide, MTA, pulp capping, and root repair material.

Results:

The first part of this paper presents the data published in the literature on applications of Portland cement in endodontic situations, including vital
pulp therapy, root perforation repair, root canal filling and root-end filling following apical endodontic surgery. This bioactive endodontic cement
has shown promising success rates compared to mineral trioxide aggregate (MTA), however, considerable modifications are required in order to
improve its clinical performance and expand its application scope as a root repair material. Hence, nano-reinforcements (graphene oxide, carbon
nanotube, silica and hydroxyapatite) and extensive chemical modifications incorporated into Portland cement composition to produce innovative
bio-dental materials with superior rheological properties have been discussed. Moreover, the current knowledge of the microstructure, mechanical
properties and durability of nanomaterial-incorporated cement has been summarized. Ultimately, this article outlines the main points of animal and
clinical studies on resin-modified Portland cement (TheraCal) as a pulp capping material and suggests further investigations prior to marketing
authorization.

Conclusion:

It can be concluded that Portland cement has the potential to be used as an acceptable pulp capping material with the least complaints in the long
term.
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1. INTRODUCTION

Portland cement is extensively used worldwide as concrete
for construction works and as a bioactive endodontic cement in
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dentistry.  It  consists of tri  and dicalcium silicates,  tricalcium
aluminate, and tetracalcium alumino ferrite and calcium sulfate
as  gypsum  [1,  2].  The  introduction  of  bioactive  cement  is  a
significant breakthrough in the production of dental and bone
cement  for  the  reconstruction  of  root  perforations  or  bone
defects. Application of Portland cement in endodontics for vital
pulp therapy or as an apical barrier in necrotic teeth has shown
successful  results  compared  to  MTA  and  previously  used
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materials  such  as  amalgam,  calcium  hydroxide  and  glass
ionomer [1, 2]. The first part of this review includes In vitro
and  in  vivo  studies  conducted  on  Portland  cement  as  a  pulp
capping material thus far.

Various  Portland  cement-based  materials  are  available,
although  the  drawbacks,  including  long-lasting  setting  time,
low mechanical  properties  (compressive,  tensile  and flexural
strength),  poor  resistance  to  microcracks  and  not  acceptable
radiopacity  limit  their  application  scope.  According  to  the
national standards, the initial setting time of Portland cement is
about  1 h,  and the final  setting time is  about  6.5 h [3].  With
tremendous scientific effort, improvements have been made in
the  multi-functional  properties  of  cementitious  materials  and
their durability without compromising the biological properties
[4].  Structural  reinforcements  and  rheological  modifications
can  be  achieved  by  modifying  cement  with  the  optimum
percentage  of  nanoscale  materials  such  as  metal  mineral
admixtures,  metal  oxides  or  carbon-based  materials  [5].
Several reports expressed a positive view on the inclusion of
nanoparticles  of  alumina,  titanium  dioxide,  nono-silica,
graphene and graphene oxide, as well as carbon nanotubes and
nanofibers in Portland cement to improve the microstructural
behavior, increase the compressive strength and alter its setting
time [6 - 9]. Nano-reinforcements act as a filler, which grants
the  cement  a  dense  structure  and  hinders  the  initiation  and
propagation  of  microcracks  when  used  in  load-bearing  areas
[5]. Of note, the radiopacity of Portland cement is not enough
to  be  visualized  radiographically,  therefore,  radiopacifying
agents  are  typically  included in  it.  Bismuth oxide containing
Portland cement has improved radiopacity and has been used
under  the  name  of  MTA,  although  recent  concerns  such  as
cytotoxicity or tooth color alteration enforce using alternative
materials, including zirconium oxide, niobium oxide and silver
nanoparticles  as  radiopacifiers  [10].  The  modified  Portland
cement  by  radiopacifiers  must  meet  certain  requirements  in
order to be allowed to enter clinical testing.

Given that there is  no comprehensive review of Portland
cement  and  its  applications,  this  paper  includes  Portland
cement  publications  in  the  dental  field  and  a  cursory  glance
over material studies from peer-reviewed journals published in
English  and  discusses  miscellaneous  modifications
incorporated  into  cement's  structure  to  improve  its
characteristics, microstructure and to facilitate its preparation
and handling for dental procedures.

2. METHODS

The  data  search  was  completed  using  the  Pubmed  and
Google  Scholar  databases  with  the  keywords  of  Portland
cement, carbon nanotube, graphene oxide, MTA, pulp capping,
root repair material.

3. RESULTS

The  collected  data  showed  that  Portland  cement  has
been applied in endodontic situations, including vital
pulp therapy, root perforation repair, root canal filling
and  root-end  filling  following  apical  endodontic
surgery  with  promising  success  rates  compared  to

mineral  trioxide  aggregate  (MTA).
Modifications  (nano-reinforcements  and/or  chemical
modifications)  are  essential  in  order  to  improve  the
clinical performance of Portland cement.
Some  animal  and  clinical  studies  on  resin-modified
Portland cement (TheraCal) as a pulp capping material
suggest  further  investigations  prior  to  marketing
authorization.

4. DISSCUSSION

4.1. Portland Cement Applications in Endodontics

4.1.1. Repair of Perforations

4.1.1.1. Animal Studies

Application  of  Portland  cement  to  repair  intraradicular
perforations in dog premolar teeth showed acceptable sealing
capacity due to the mineralized tissue formation, periradicular
tissue  regeneration  and  scarce  inflammatory  response  in  the
perforated area [11]. Repairing perforation with calcium sulfate
barrier  and  white,  type  ΙΙ  or  type  ΙV  Portland  cement  as  an
obturation material also resulted in high remineralization, and
no difference was found between various materials in terms of
newly formed bone [12, 13].

4.1.1.2. Clinical Studies

In a case report using Portland cement for sealing furcation
perforation, Burges et al. reported no complaints after 9 years
[14].

4.1.2. Root-end Filling

4.1.2.1. Clinical Studies

In  a  pilot  study,  Silva  SR  et  al.  compared  MTA  and
Portland cement as root-end filling materials after endodontic
surgery  of  maxillary  and  mandibular  anterior  teeth.  Similar
bone formation was obtained in both groups and periradicular
regeneration occurred in all cases after six months [15].

4.1.3. Resorption

In a case report, Burges et al. found promising long-term
results  following  the  application  of  Portland  cement  for  the
treatment  of  a  tooth  with  internal  resorption  and  wide
granulation  tissue  [14].

4.1.4. Pulp Capping

4.1.4.1. Animal Studies

Histological  analysis  of  pulp tissues six months after  the
application of white and gray Portland cement and white and
gray MTA for pulp capping of dog premolars showed no acute
inflammation  and  the  materials  were  equally  effective  in
vascularization and fibrous tissue formation [16].  Reparative
hard  tissue  formation  following  the  application  of  Portland
cement as a pulp capping material in baboon's premolar teeth
was reported to be similar in thickness and quality to the MTA
group,  whereas  significantly  less  and  more  incomplete  hard
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tissue was detectable in the calcium hydroxide group [2]. The
newly formed hard tissue seemed to be atubular and contained
porosities and defects and bore no resemblance to secondary
dentin in all groups evaluated.

In  contrast,  Shayegan  et  al.  observed  the  formation  of  a
complete thick layer of hard tissue 3 weeks after pulp capping
of primary pig teeth with Portland cement, MTA, β-tricalcium
phosphate and calcium hydroxide. Although some specimens
in  the  calcium  hydroxide  group  showed  incomplete  dentin
bridge  formation,  given  the  normal  pulp  reaction,  intact
odontoblastic layer and absence of inflammatory response and
bacteria,  this  study  indicated  the  biocompatibility  and
regenerative  ability  of  mentioned  endodontic  cement  [17].

4.1.4.2. Clinical Studies

Short-term histological  analysis  of  the  effect  of  Portland
cement  as  a  pulp  capping  material  on  human  third  molars
showed an inflammatory response in most  cases,  and Dentin
Bridge  was  detected  in  only  10% of  teeth.  Twenty-one  days
after treatment, odontoblast-like cells were presented below the
pulp tissue [18].

4.1.5. Pulpotomy

4.1.5.1. Animal Studies

Histological  analysis  of  the  dog's  pulp  tissue  following
pulpotomy  using  MTA  and  white  and  gray  Portland  cement
showed that all materials were equally effective in preserving
pulp vitality. After 4 months of follow-up, normal pulp tissue
without  inflammation  or  infection  was  observed  [19,  20].
Another study by Holland et al. corroborated these results in a
60-day follow-up [21]. Comparison of Portland cement, MTA,
β-TCP,  ferric  sulfate  and  formocresol  effectiveness  for
pulpotomy in an animal study on pigs resulted in normal pulp
tissue response in Portland cement, MTA and β-TCP groups,
while acute inflammatory cells, internal resorption and necrotic
areas  were  detected  in  ferric  sulfate  and  formocresol  groups
[22].

4.1.5.2. Clinical Studies

Clinical  studies  on  human  primary  teeth  showed  that
Portland  cement  and  MTA  might  serve  as  effective  pulp
capping materials [23, 24]. These materials yielded a success
rate  of  100%  in  24-month  follow-up  clinically  and
radiographically, whereas the application of calcium hydroxide
resulted in internal resorption and frequent necrotic areas [24].
Mineralized material deposition and the beneath healthy pulp
tissue were detectable during the 6-month follow-up of teeth
treated  with  Portland  cement.  Another  24-month  follow-up
study by Yildirim et al. reported 93.3% and 86.7% clinical and
radiographic  success  rates  in  primary  teeth  treated  with
Portland  cement  for  pulpotomy.  Although  no  significant
difference was between the Portland cement and MTA groups,
internal resorption, periodontal space widening and furcation
radiolucency were observed in the Portland cement group [25].
These results are in agreement with a study by Vilimek et al.
[26]. In a similarly designed study, Sakai et al. found a success
rate of 100% in teeth treated with Portland cement and MTA

during 24-month follow-up. Notwithstanding, during the first 6
months, mineralized material deposition was detected in 100%
and  57%  of  teeth  treated  with  Portland  cement  and  MTA,
respectively [23]. Twelve-month follow-up of primary molars
following  conventional  pulpotomy  using  Portland  cement
showed satisfactory results in preserving pulp vitality [27, 28].
The  long-term  success  of  human  primary  teeth  pulpotomy
using Portland cement and formocresol was also evaluated, and
100%  of  the  success  rate  was  achieved  by  Portland  cement
[29].  Pulpotomy  treatment  of  human  premolar  teeth  with
Portland  cement  and  MTA  also  showed  no  significant
difference  in  the  inflammatory  response,  soft  tissue
organization  and  dentin  bridge  formation  [30].

Furthermore,  the  application  of  radiopaque  Portland
cement  (containing  zirconium  oxide  or  iodoform)  for
pulpotomy of primary teeth showed no adverse effects in terms
of clinical, radiographic or histological outcomes [31, 32].

4.1.6.  Portland  Cement  as  an  Apical  Barrier  for  Nonvital
open Apex Teeth

In  a  case  series  study,  Chakraborty  et  al.  reported
successful clinical outcomes after 6-month follow-up of 3 cases
with  nonvital  and  open  apex  conditions  following  the
application of white Portland cement as an apical barrier [33].
Using white  Portland cement  apical  plug  with  an  absorbable
collagen  sponge  barrier  for  apexification,  De-Deus  et  al.
reported clinical success and no signs of periapical rarefaction
in a one-year follow-up [34].

4.1.7. Indirect Pulp Treatment

4.1.7.1. Clinical Studies

Application  of  Portland  cement,  MTA  and  calcium
hydroxide for indirect pulp treatment showed a 90.3% success
rate regardless of the used material. In 6-month follow-up, both
Portland cement and MTA were found effective in limiting the
infection and treatment of deep carious lesions [35].

4.1.8. Portland Cement as an Intracanal Medicament

4.1.8.1. In-vitro Studies

The intracanal application of calcium silicate-based cement
(white Portland cement, white ProRoot MTA and Biodentine)
with  chlorhexidine  as  a  vehicle  showed  higher  calcium  ion
release  compared  to  calcium  hydroxide  during  the  14  days
period. The addition of 2% chlorhexidine extended the setting
time up to 84 days and consequently facilitated the removal of
medicament [36].

4.1.9. Treatment of Hypersensitivity

Treatment  of  dentin  hypersensitivity  using  a  calcium
silicate  paste  based  on  Portland  cement  occluded  dentinal
tubules  by  the  formation  of  a  fine  crystalline  layer  and
demonstrated  the  ability  of  this  material  to  reduce  dentin
permeability.  SEM/EDX  analyses  revealed  the  precipitate
deposits and formation of a calcium-reach layer on the dentin
surface,  suggesting  the  clinical  use  of  Portland  cement  as  a
desensitizing agent [37].
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4.1.10. Portland Cement in Bone Tissue Engineering

Calcium silicate-based materials are a potential candidate
for  bone  tissue  engineering  due  to  their  good  physical
properties,  biocompatibility  and  acceptable  bioactivity  and
osteoconductivity  [38].  Portland  cement  stimulates  the
expression of bone remodeling markers and the growth of bone
tissue  with  the  formation  of  osteoid  and  new  trabeculla  [39,
40].  The  behavior  of  osteoblast  lineage  cultured  on  Portland
cement  has  been  previously  discussed.  Three-dimensional
porous Portland cement-based scaffolds with high mechanical
strength  compatible  with  that  of  normal  bone  have  been
proposed.  These  scaffolds  support  human  osteoblast  cell
adhesion and proliferation [41, 42]. Portland cement scaffold
modified with polydimethylsiloxane enhanced cell metabolism
and alkaline phosphatase activity after 2 weeks [42].

Portland cement is well-suited for bone repairing in load-
bearing  areas  such  as  vertebrae  or  mandible.  In  order  to
produce  injectable  bone  cement  using  Portland  cement  with
accelerated setting time, studies introduced liquefying additives
into  it  [43].  Modification  of  Portland  cement  with  2  wt%
sodium  or  potassium  citrate  improved  its  injectability  and
reduced  the  setting  time  while  increasing  the  compressive
strength [44]. It is worth mentioning that at low concentrations,
citrate acts as a Portland cement retardant by slowing down the
dissolution  of  alite  and  aluminate,  although,  in  high
concentrations,  it  accelerates  the  hydration  process  [45,  46].
Other additives, such as calcium chloride and calcium nitrate,
are also used for modifying Portland cement injectability whilst
maintaining its compressive strength [47].

Coating CaCO3 on cement by carbonation is a feasible way
to  enhance  the  biocompatibility  and  bioactivity  of  Portland
cement.  Exposure  of  carbonated  Portland  cement  to  calcium
phosphate solution resulted in the precipitation of apatite-like
crystals (carbonated apatite), which strongly resemble natural
bone structure [48].

Polymethyl methacrylate bone cement containing hydrated
and anhydrous white Portland cement as a filler also showed
satisfying apatite  formation ability.  The formed apatite  layer
was  denser,  and  pH  value  was  higher  in  hydrated  Portland
cement [49].

5. WHITE PORTLAND CEMENT

Although various characteristics of white Portland cement
have been extensively discussed previously, a brief review of
the  composition  of  this  material  would  be  worthwhile.  The
grayish  color  of  Portland  cement  led  to  the  introduction  of
modified  Portland  cement  named  white  Portland  cement  to
match the tooth color. The color change from gray to white is
due to significantly fewer chromospheres, predominantly iron,
manganese,  chromium  and  titanium  in  white  brands  [50].
White and gray Portland cement and white and gray MTA are
composed of the same major components [51]. White Portland
cement  is  made  of  high-grade  limestone  with  less  than  0.15
wt%  Fe2O3  and  0.015  wt%  MnO  and  white  clay  and  other
products with less than 1 wt% FeO and 0.8 wt% TiO2 [52]. A
comparison of type Ι white and gray Portland cement showed
that  white  cement  has  more dicalcium silicate  and aluminate
and trace of tetracalcium aluminoferrite [50]. SEM analysis of
white  Portland  cement  showed  various  amorphous,  globular
and  crystalline  particles  dispersed  over  ground  with  finer
particles  [53].

6.  MODIFICATION  OF  PORTLAND  CEMENT  WITH
RADIOPACIFIERS

Portland cement is slightly radiopaque (0.86-2.02 mm Al)
in  the  natural  state;  thus,  it  does  not  meet  the  International
Organization  for  Standardization  (ISO  6876)  requirements.
Literature has introduced various radiopacifiers, including zinc
oxide,  zirconium  oxide,  titanium  dioxide,  barium  sulfate,
iodoform,  bismuth  oxide,  calcium  tungstate  and  ytterbium
trifluoride  to  allow  the  distinction  of  Portland  cement  from
adjacent  dentin  and  anatomical  structures,  although  it  is
uncertain if favorable properties would be satisfied (Table 1)
[54,  55].  Thus  far,  Portland  cement/lead  oxide  and  Portland
cement/bismuth  oxide  have  shown  the  highest  radiopacity
values,  while  Portland  cement/zinc  oxide  showed  the  lowest
values  of  radiopacity.  Nevertheless,  all  of  them  exhibited
higher radiopacity values than dentin, and therefore they can be
potentially  added  to  Portland  cement  as  radiopacifier  agents
[56]. It has been reported that all materials containing Portland
cement and radiopacifiers promote pH values similar to pure
Portland cement and release calcium ions gradually [55, 57].

Table 1. Studies on the addition of various radiopacifiers to Portland cement.

Refs. Study
Type Type of PC Radiopacifier Other Groups Obtained Results

Bortoluzzi et al.
[181]

Animal
study WPC 20% Bi2O3

MTA + 20% BaSO4

MTA + 20% Bi2O3

MTA ProRoot

Modified PC showed a higher inflammatory response
with no necrosis area during 60 days of implantation,
no difference was between groups in reparative tissue

Li et al.
[65] In vitro WPC

20% Bi2O3

20% ZrO2
White PC

Bi2O3 extended initial and final setting times and
retarded the hydration degree

ZrO2 did not affect the setting time and accelerated
the hydration degree

Sabari et al.
[90]

Animal
study WPC

20% Bi2O3

20% ZrO2

20% Iodoform
MTA Similar tissue reactions were observed among all

groups during 60 days

Souza et al.
[87] In vitro PC 2%, 5%, 10%,

15% (BiO)2CO3
MTA Angelus

(BiO)2CO3 increased the setting time, all groups had
similar solubility, PC+15% (BiO)2CO3 showed

radiopacity similar to MTA, acceptable biological
properties in all groups were observed
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Refs. Study
Type Type of PC Radiopacifier Other Groups Obtained Results

Mestieri et al.
[182] In vitro WPC

Nb2O5 µP
Nb2O5 nP MTA Similar or higher cytocompatibility and bioactivity

compared to MTA were observed

Flores et al.
[183] In vitro

WPC+10,20,30%
wallostonite

WPC+10,20,30%
BG

20% Bi2O3 MTA Angelus
Addition of wollastonite and BG reduced the setting

time and radiopacity, acceptable solubility and
physical properties were observed compared to MTA

Vazquez et al.
[184] In vitro PC 30% ZrO2

AgNPs
WMTA

WMTA + AgNPs

Addition of AgNPs favored the physicochemical and
mechanical properties and increased the antibacterial

activity

Guerreiro et al.
[142] In vitro PC+ 10, 20% nHA 30% ZrO2 WMTA

Addition of nHA improved the antibacterial activity
and setting time but harmed the mechanical

properties and solubility
Slompo et al.

[185] In vitro WPC 20% ZrO2 WMTA Low cytotoxicity was observed

Antonijevic et al.
[81] In vitro PC 30% YbF3

CSC+30%
YbF3+40%CaCO3

CSC+30%
YbF3+35% nHA

PC+ YbF3 had the most radiopacity, setting time and
fluoride release with acceptable biocompatibility and

micromechanical properties

Bosso et al.
[55] In vitro Type ΙΙ PC(CSC)

Resinous CSC

ZrO2 nP
ZrO2 µP

Bi2O3

Nb2O5

CaWO4

WMTA CSC+ ZrO2 µP, Nb2O5 and CaWO4 had similar
results to WMTA with shorter setting time

Tanomaru et al.
[83] In vitro PC + 10%, 20%

CaO
30% ZrO2

30% Nb2O5
WMTA PC+ZrO2+ 20%CaO had a setting time similar to

WMTA but with lesser compressive strength

Mestieri et al.
[85] In vitro PC

30% Nb2O5 nP
30% Nb2O5 µP WMTA MTA had more radiopacity, but OPC had greater cell

viability

Guerreiro et al.
[76] In vitro

PC
PC+5%ZnO
PC+10%ZnO

ZrO2 - Addition of ZnO decreased the compressive strength,
all materials had similar antibacterial activity

Marciano et al.
[186] In vitro PC

20% ZrO2

20% CaWO4
WMTA Bovine teeth filled with all materials showed color

alteration after 60 days

Viapiana et al.
[82] In vitro PC+ epoxy resin

ZrO2 nP, µP
Nb2O5 nP, µP

AH Plus
MTA Fillapex

OPC showed radiopacity similar to MTA and had the
highest Ca release and crystalline deposition

Tanomaru et al.
[10] In vitro WPC

ZrO2 nP, µP
Nb2O5 nP, µP WMTA MTA had the most radiopacity, all materials had

antibacterial activity

Chen et al.
[97] In vitro PC Bi2O3+0, 15, 30,

100% YSZ -
PC+ Bi2O3+ 15%YSZ had the most radiopacity but

similar cell viability to PC+ Bi2O3

Viapiana et al.
[187] In vitro PC+ epoxy-based

vehicle
ZrO2 nP, µP

Nb2O5 nP, µP AH Plus All sealers had great sealing ability, favorable overall
characteristics were observed compared to AH Plus

Antonijevic et al.
[67] In vitro PC

10, 20, 30% ZrO2

10, 20, 30% Bi2O3

10, 20, 30% YbF3

ProRoot MTA
Bi2O3 decreased the compressive strength of PC but

ZrO2 and YbF3 increased it, Bi2O3 extended the
setting time but ZrO2 and YbF3 did not affect it

Viapiana et al.
[86] In vitro PC

ZrO2 nP, µP
Nb2O5 nP, µP

AH Plus
MTA Fillapex
MTA Sealapex

PC+ ZrO2 µP and PC+ Nb2O5 nP had setting time
similar to Fillapex, AH Plus had the most

compressive strength, OPC had acceptable solubility
but the least radiopacity

Weckwerth et al.
[71] In vitro WPC

Bi2O3

(BiO)2CO3

Bi5H9N4O22

ZrO2

-
Addition of (BiO)2CO3 and Bi5H9N4O22 increased the

solubility, no antibacterial activity but acceptable
antifungal activity was observed

Coleman et al.
[188] In vitro WPC ZrO2 - ZrO2 reduced the initial and final setting time of PC

and had a slight effect on hydration behavior

Guerreiro et al.
[57] In vitro PC

ZrO2

Bi2O3

CaWO4

ZOE All OPC compositions had great antibacterial activity

Duarte et al.
[66] In vitro WPC

ZrO2

Bi2O3

CaWO4

WMTA
WMTA had the least setting time, all radiopacifiers

increased PC's setting time, all materials had alkaline
pH and released Ca

(Table 1) contd.....
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Refs. Study
Type Type of PC Radiopacifier Other Groups Obtained Results

Formosa et al.
[73] In vitro PC 20% Bi2O3

TCS
TCS+20% Bi2O3

Bi2O3 increased the setting time,
OPC had acceptable compressive strength when

cured in distilled water
Cutajar et al.

[78] In vitro PC 0-50% ZrO2 ProRoot MTA Addition of 30% ZrO2 showed great physicochemical
and mechanical properties

Cornelio et al.
[92] In vitro PC

ZrO2

Bi2O3

CaWO4

ZOE High biocompatibility was observed

Camilleri et al.
[91] In vitro PC

BaSO4

Au
Ag/Sn alloy

MTA
Intermediate

restorative material

OPC had extended setting time compared to PC, but
similar compressive strength was observed

PC+Au had setting time and compressive strength
similar to MTA

Vivan et al.
[72] In vitro PC clinker

CaSO4

Bi2O3

MTA Angelus
MTA Bio
Sealepox

Light-cured MTA

Radiopacity of all materials was acceptable except
for light-cured MTA

Min et al.
[98] In vitro PC Bi2O3 Pure PC No difference was observed in the mineralization of

hDPCs in PC and OPC groups

Bortoluzzi et al.
[189] In vitro WPC

Bi2O3

BaSO4

Iodoform

Pure PC
WMTA

All materials had acceptable radiopacity except for
PC and PC+ BaSO4

Duarte et al.
[56] In vitro PC

(BiO)2CO3, Bi2O3

Bi5H9N4O22

BaSO4, ZnO, PbO
ZrO2, CaWO4

Iodoform

Pure PC All OPC compositions had acceptable radiopacity

Saliba et al.
[70] In vitro WPC 10, 15, 20, 25,30%

Bi2O3
WPC Addition of Bi2O3 did not affect the compressive

strength of PC
Hwang et al.

[94] In vitro PC Bi2O3 MTA OPC had radiopacity similar to MTA, MTA had
higher cell viability than OPC

Bueno et al.
[63] In vitro WPC Bi2O3 WMTA MTA and PC+15% Bi2O3 had similar radiopacity

Coutinho et al.
[60]

Animal
study PC Bi2O3 ProRoot MTA All materials were biocompatible during 60 days

Kim et al.
[190] In vitro PC Bi2O3 -

PC+20% Bi2O3 had the most radiopacity and similar
cell viability to PC+ less concentrations of Bi2O3

Note: PC: Portland cement, WPC: white Portland cement, BG: BioGlass, CSC: calcium silicate cement.

6.1. Bismuth Oxide

MTA is predominantly composed of Portland cement with
the addition of bismuth oxide as a radiopacifier [58]. Addition
of various percentages of bismuth oxide up to 50% to Portland
cement did not influence the alkaline pH of the cement [59].
Moreover, Portland cement radiopacity has a correlation with
the concentration of incorporated bismuth oxide, although the
cytotoxicity  issues  must  be  considered  [60].  Radiopacity  of
white  Portland  cement  with  bismuth  oxide  (20%)  does  not
show a significant difference with that of aluminum with 4 mm
thickness, which is the ideal value according to the American
National  Standard  Institute/American  Dental  Association
(ANSI/ADA)  recommendations  [56,  61,  62].  Bueno  et  al.
reported  that  the  ideal  concentration  of  bismuth  oxide  to
provide  radiopacity  similar  to  MTA  is  15%  [63].

It is noteworthy that the addition of bismuth oxide seems to
compromise  the  physical  properties  of  the  material.  The
particle size of bismuth oxide also affects these properties as
reducing  the  particle  size  of  bismuth  oxide  increases  the
diametral  tensile  strength  significantly  [64].  Bismuth  oxide
increases  the  porosity  of  Portland  cement  and  consequently

reduces the compressive strength and extends the setting time
[65 - 67]. Comparing the influence of the addition of various
radiopacifiers to Portland cement on its compressive strength
showed that only the incorporation of bismuth oxide resulted in
lower  compressive  strength  [68].  Nevertheless,  in  this  study
radiopaque  Portland  cement  had  reduced  initial  and  final
setting  times.  Bismuth  oxide  concentration  has  a  negative
correlation with mechanical strength and increases the relative
porosity of set material [69]. In contrast, Saliba et al. showed
that Portland cement's compressive strength was not affected
by the addition of various percentages of bismuth oxide [70].
According  to  Bosso-Martelo  et  al.,  amongst  various
radiopacifiers  only  bismuth  oxide  did  not  affect  the  final
setting time of Portland cement, although it was significantly
more than the setting time of MTA Angelus [55].

Furthermore,  there  are  conflicting  results  regarding  the
impact of bismuth oxide on the solubility of Portland cement.
According  to  Weckwerth  et  al.,  bismuth  oxide  affects  this
property  adversely  [71],  whereas  some studies  indicated that
radiopaque Portland cement exhibits less mass loss following
immersion in water compared to MTA [66, 72].  It  should be

(Table 1) contd.....
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taken  into  consideration  that  the  curing  and  experiment
conditions  affect  the  physical  properties  of  cement
significantly.  For  instance,  bismuth  oxide  modified  Portland
cement  has  higher  compressive  strength  when  immersed  in
distilled water, although it shows lower compressive strength
in Hank's balanced salt solution (HBSS) [73].

6.2. Zirconium Oxide

Studies have shown that the fabrication of Portland cement
associated  with  zirconium  oxide  as  a  radiopacifier  might  be
preferred to bismuth oxide since no significant adverse effect
was  detected  concerning  the  physical  properties  such  as
compressive  strength  and  solubility  and  biological  activities
[66  -  68].  Some  studies  reported  similar  radiopacity  for
Portland  cement  containing  zirconium  oxide  micro  or
nanoparticles  and  Portland  cement  containing  bismuth  oxide
[55,  74].  Studies  showed  that  the  inclusion  of  30  wt%
zirconium  oxide  to  Portland  cement  results  in  acceptable
compressive  strength  without  compromised  hydraulic
properties,  suggesting  zirconium  oxide  as  a  potential
alternative  to  bismuth  oxide  [74  -  77].  Furthermore,  a
combination of 30 wt% zirconium oxide and Portland cement
promotes its radiopacity, setting time and solubility similar to
ProRoot MTA [78]. The same results were achieved by Bosso-
Martelo  et  al.  [55].  In  contrast,  a  longer  setting  time  was
observed  by  Duarte  et  al.  following  the  addition  of  20  wt%
zirconium oxide to white Portland cement with a considerable
difference  to  white  MTA,  which  seems  to  be  related  to  the
amount  of  calcium  sulfate  in  this  material  [66].  This  study
reported  limited  calcium  release  from  radiopaque  Portland
cement (containing zirconium oxide, bismuth oxide or calcium
tungstate) compared to pure white Portland cement, however, it
was not different from the calcium release of white MTA in the
first hours. Zirconium oxide does not interfere with hydration
by-products  of  Portland  cement  and  acts  as  an  inert  filler.
Moreover,  it  provides  efficient  nucleation  sites  for  the
precipitation and growth of the calcium-silicate-hydrate (C-S-
H)  gel  phase  resulting  in  an  increase  in  hydration  degree  by
26%  [65,  75  -  79].  SEM  evaluation  of  zirconium  oxide
modified  Portland  cement  revealed  free  zirconium  oxide
particles distributed throughout the cement [75]. In agreement
with these studies, Li et al. reported that zirconium oxide did
not  participate  in  chemical  reactions  of  Portland  cement
hydration  and  decreased  the  solubility  of  cement  without
affecting  its  calcium  release  capacity  [80].

6.3. Ytterbium Trifluoride

Ytterbium trifluoride seems to be a potential radiopacifier
to  be  incorporated  into  Portland  cement  with  no  significant
adverse effect on its mechanical and biological properties [81].
The  addition  of  20  wt%  ytterbium  trifluoride  resulted  in  a
radiopacity value equal to 3 mm Al cut-off and promoted the
compressive strength of Portland cement [67]. Incorporation of
fluoride in Portland cement and long-term sustained release of
it might have beneficial effects on the prevention of caries and
improvement  of  osteogenesis,  dentinogenesis  (to  enhance
apexogenesis and apexification) and mechanical properties of
dentin by the formation of  fluorapatite.  However,  it  is  worth
mentioning  that,  excessive  fluoride  accumulation  interferes

with hard tissue formation and might cause cytotoxic issues for
root-end filling material. Noticeable release of Yb and F ions
from ytterbium trifluoride containing Portland cement leads to
an increased risk of cytotoxicity [81]. Notably, the low water
solubility  of  ytterbium  trifluoride  may  limit  the  long-term
degradation of dental cement. This is of particular importance
in preserving the structural integrity of the tooth for treatment
success.

6.4. Niobium Oxide

Another  alternative  for  bismuth  oxide  considered  in  the
literature  is  niobium  oxide  micro  and  nanoparticles  [10,  82,
83].  Recent  researches  also  showed  that  niobium  might
stimulate  hydroxyapatite  deposition.  Addition  of
microparticulate and nanoparticulate niobium oxide to Portland
cement results in a material with satisfactory physicochemical
and  biological  characteristics  in  terms  of  setting  time  and
radiopacity and provides an alkaline environment. This study
also indicated that the particle size did not have a significant
effect on the physicochemical and biological properties of the
cement [84]. Although higher radiopacity was demonstrated by
MTA compared to Portland cement containing niobium oxide,
greater  cell  viability  and  alkaline  phosphatase  activity  were
detected  by  this  combination  [85].  Niobium  oxide  modified
Portland cement showed setting time, flowability, compressive
strength and solubility adequate for clinical applications [86].

6.5. Other Radiopacifiers

Other radiopacifiers, such as 15% bismuth carbonate and
calcium tungstate, have been incorporated into Portland cement
and showed adequate pH level, calcium release and radiopacity
similar  to  MTA  [66,  87].  The  addition  of  15%  bismuth
carbonate to Portland cement did not influence its solubility but
increased the setting time [87]. Studies have demonstrated that
Portland  cement  containing  20%  iodoform  shows  sufficient
radiopacity to address the current regulatory standards for root
filling materials [88, 89]. Other radiopacifiers, including lead
oxide, bismuth subnitrate, tantalum oxide and barium sulfate,
have  been  incorporated  into  Portland  cement  with  higher
radiopacity than dentin or pure Portland cement [56, 77, 90].
Furthermore,  addition  of  barium  sulfate  or  silver  alloy
exhibited  acceptable  radiopacity  and  induced  a  PH  increase.
Although these materials extended the setting time, no adverse
effect was observed regarding the compressive strength [91].

6.6.  Biocompatibility  of  Portland  Cement  with  Different
Radiopacifiers

6.6.1. In vitro Studies

The  aforementioned  additives  might  influence  the
biocompatibility of cement and interfere with the healing of the
periapical tissues. In a biological point of view, radiopacifying
agents with excellent safety profiles and good biocompatibility
are  commonly  chosen.  Cell  culture  studies,  in  addition  to
morphologic  analysis,  reported  no  cytotoxicity  of  white
Portland  cement  containing  bismuth  oxide,  zirconium  oxide
and  calcium  tungstate  against  murine  periodontal  ligament
cells and rat osteosarcoma cells up to a concentration of 100
mg/ml.  Although  the  presence  of  heavy  metals  in  higher
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concentrations can promote necrosis cell death due to oxidative
stress [92]. White Portland cement containing zirconium oxide
or zinc oxide exhibited acceptable cell viability and increased
ALP activity of hDPSCs during a 21 days period [93].

Some  previous  studies  found  similar  bioactivity,
cytotoxicity,  genotoxicity  and  tissue  reaction  among  pure
Portland  cement,  bismuth  oxide  containing  Portland  cement
and  MTA  [94  -  96].  The  addition  of  various  amounts  of
bismuth oxide to Portland cement up to 50% does not affect its
biocompatibility,  although the concentration of 15% bismuth
oxide  shows  a  significant  decrease  in  the  inflammatory
response [59]. A modified Bi2O3-radiopacifier (zirconia doped
bismuth oxide) was incorporated into Portland cement by Chen
et  al.  in  order  to  improve  the  radiopacity  of  the  material  to
approximately 6 mm Al. The desirable biocompatibility of this
compound satisfies the requirements for a potential root filling
material [97].

Furthermore, according to Min et al., radiopaque and pure
Portland cement have similar effects on the mineralization of
hDPCs [98]. This In vitro study observed well-spread hDPSCs
with  cellular  extensions  in  close  contact  with  radiopaque
Portland cement in addition to increased ALP activity and high
expression  of  osteogenic  markers  (osteonectin  and  dentin
sialophosphoprotein).  Evaluation  of  cytotoxicity  of  15%
bismuth  carbonate-containing  Portland  cement  on  human
periodontal  ligament  fibroblasts  (hPLFs)  showed  noticeable
biocompatibility [87]. Further assessment of the expression of
bone  formation  genes  (ALP,  COL1  and  RUNX2)  and  pro-
inflammatory cytokines (IL-1A, IL-6, IL-8 and TNF) resulted
in similar findings to MTA [87].

Regarding the addition of Ytterbium trifluoride to Portland
cement, In vitro studies have reported no adverse effect on the
differentiation of bone marrow mesenchymal stem cells and the
morphology  of  osteoblasts  and  osteoclasts  following  cell
culture. Furthermore, numerous cell extensions were detected,
implying  appropriate  cell  spreading  and  adherence  to  the
substrate  [81].

6.6.2. Animal Studies

Although In vitro studies have shown satisfying bioactivity
of radiopaque Portland cement, in an animal study, Dreger et
al.  observed  that  MTA  is  more  effective  in  promoting
biomineralization  in  the  dentin-cement  interface  and  the
intratubular space. This study reported more rapid and intense
mineral deposition in MTA cases compared to Portland cement
with 20% bismuth oxide [99].

Implantation  of  Portland  cement  associated  with
radiopacifiers, including iodoform or zirconium oxide, into the
dorsal  connective  tissue  of  rats  also  showed  no  significant
difference  in  the  inflammatory  response  from  pure  Portland
cement,  however,  morphological  analyses  revealed  less
inflammation  in  radiopaque  groups  [88].  In  a  similarly
designed study, no difference in terms of tissue reaction was
detected between Portland cement containing 20% iodoform or
zirconium oxide or bismuth oxide and MTA [90]. Adversely,
Silva  et  al.  demonstrated  that  radiopacifier  agents  induced
inflammatory  reactions  significantly,  and  this  increase  was
higher  in  Portland  cement  containing  bismuth  oxide  in

comparison with Portland cement with zirconium oxide [74].

6.6.3. Clinical Studies

Clinical  and  subsequent  histological  analyses  of  pulp
tissues following the application of Portland cement containing
zirconium  oxide  or  iodoform  showed  no  inflammatory
response and granulation tissue during the 24-month follow-up
[31, 32].

7.  MODIFICATION  OF  PORTLAND  CEMENT  WITH
CALCIUM CHLORIDE

Incorporation of calcium chloride up to 15% changes the
surface morphology of white Portland cement and results in a
more  homogenous  surface  with  less  porosity  which  reduces
bacterial contamination and favors biological properties [53].
Furthermore, it reduces the setting time of Portland cement and
MTA by altering the kinetics  of  tricalcium silicate hydration
[100], improves the sealing ability [101] and push-out strength
[102],  increases  PH  [103],  reduces  the  solubility  [103]  and
does  not  affect  the  dimensional  stability  [104].  Moreover,
calcium chloride modified Portland cement possesses adequate
compressive  strength  for  orthopedic  applications  [47].  The
calcium silicate  cements  with  calcium chloride  release  more
calcium  ions  and  increase  pH  immediately,  although  no
difference  was  observed  in  the  other  intervals  [105].  The
addition  of  calcium  carbonate  and  calcium  chloride
combination  to  MTA  (Portland  cement  containing  bismuth
oxide)  also showed a  shorter  setting time compared to  MTA
Angelus and ProRoot MTA [58].

In vitro  evaluation of biocompatibility and bioactivity of
Portland  cement  containing  calcium  chloride  has  shown  no
cytotoxicity  against  stem  cells  from  human  exfoliated
deciduous  teeth  at  concentrations  <12.5  mg/ml  [96,  106].  In
contrast, fast-set Portland cement has high cytotoxicity against
hDPSCs [53]. Implantation of dentin tubes containing Portland
cement with 10% calcium chloride in the subcutaneous tissue
of  rats  resulted  in  biomineralization  in  the  dentin-cement
interface  [99].  Portland  cement  containing  3  wt%  calcium
chloride exhibited the most bioactivity and the highest apatite
forming ability when immersed in simulated body fluid (SBF)
solution [107].

8.  MODIFICATION  OF  PORTLAND  CEMENT  WITH
GRAPHENE OXIDE

Portland  cement  reinforced  with  carbon-based
nanomaterials such as carbon nanofibers, multiwalled carbon
nanotubes  and  graphene  oxide  nanoplatelets  has  shown
improved  fracture  toughness  and  water-resistant  properties
with decreased porosity [108, 109]. Graphene oxide accelerates
Portland  cement  hydration  process  by  improving  crystal
growth  and  providing  a  nucleation  effect.  Graphene  oxide
accelerates the formation of C3S, which is responsible for the
early strength of the material, although it has been reported to
affect  the  hydration  of  C3A more  perceptibly  than  C3S [110,
111].  The  incorporation  of  0.1%  graphene  oxide  increases
Portland  cement  hydration  degree  up  to  10.4%  in  28  days
[112]. The carboxyl acid groups of graphene oxide can bond
covalently with C-S-H and improve the mechanical properties
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of cement. Furthermore, graphene oxide acts as a reinforcing
filler  and  decreases  cement's  porosity  and  permeability,
prevents  propagation  of  cracks  and  presents  an  abrasion-
resistant  dense microstructure  [6,  110,  113].  Graphene oxide
can improve the compressive strength of Portland cement by
33% and its flexural strength by 59% [114]. Moreover, it has
been reported to increase the compressive strength of Portland
cement  by  46%  and  its  tensile  strength  by  53%  [115].  The
addition  of  0.1  wt%  nano-graphene  oxide  increases  the
compressive  strength  of  Portland  cement  from  54.2  MPa  to
84.5 MPa, which is about 55.8% [113].

The  incorporation  of  5%  graphene  oxide  into  various
bioactive calcium silicate cement improves the mineralization
significantly and does not affect the proliferation of hDPSCs
[116].  Another  study  revealed  that  calcium  silicate  ceramic
composites reinforced with graphene oxide nanoplatelets have
acceptable  apatite  forming  ability,  biocompatibility  and  also
promote  the  viability  and  proliferation  of  human  osteoblast
cells  [117].  The  addition  of  1  wt%  graphene  oxide
nanoparticles to Portland cement improves its  microhardness
without affecting its biocompatibility [118]. On the whole, the
addition  of  graphene  oxide  to  Portland  cement  exhibits
beneficial  effects  on its  workability  and durability,  however,
further investigations on the biocompatibility of this material
are required to be applied in clinical studies.

9.  MODIFICATION  OF  PORTLAND  CEMENT  WITH
CARBON NANOTUBES

Single-walled  carbon  nanotubes  (SWCNTs)  and  multi-
walled  carbon  nanotubes  (MWCNTs)  are  promising
reinforcements  for  tissue  engineering  and  producing
cementitious materials due to their multi-functional properties.
Provided  well  dispersion  of  nanotubes  in  the  cement  matrix,
CNTs act as a filler and produce a denser material and prevent
crack propagation [119]. Moreover, CNTs affect the cement by
bridging  between  hydration  products  and  consequently
enhancing  composite  toughness  [120,  121].  Another
consideration in this regard is that CNTs act as nucleation sites
for hydration products resulting in a high percentage of C-S-H
and portlandite [122]. Despite conflicting results in early works
on CNTs-modified Portland cement, predominant studies agree
on  improved  flexural  [9],  compressive  [9,  123]  and  tensile
strength  [124]  and  modulus  of  elasticity  [125]  following  the
addition of CNTs to Portland cement [126].

10.  MODIFICATION OF PORTLAND CEMENT WITH
NANO-SILICA

Another nanoparticle to be introduced into Portland cement
to enhance its performance in terms of workability and long-
term  durability  is  nano-silica.  Nano-silica  particles  act  as  a
filler in the paste and provide nucleation sites, thus accelerate
cement's  hydration  process.  On  the  other  hand,  it  affects
cement  characteristics  by  undertaking  a  pozzolanic  reaction,
which further  intensifies  C-S-H gel  growth and densifies  the
final cement [127 - 129]. The hydration rate of cement depends
on the surface area of added silica particles and the pattern of
dispersion. Although, in recent years, attention has been widely
paid to the impact of nanoparticles on the hydration of C3S, few
studies showed that nano-silica can improve the hydration of

C3A with a decrease in the heat release rate during the process
[130].  Notwithstanding,  further  exploration  is  required  for  a
better understanding of the influence of silica on the hydration
mechanism of C3S and C3A. It is well known that nano-silica
containing  cement  presents  a  shorter  setting  time,  reduced
formation  of  calcium  hydroxide,  dense  and  impact
microstructure and superior mechanical properties [131]. The
addition  of  nano-silica  to  Portland  cement  was  found  to
improve its compressive, flexural and split tensile strength in a
concentration-dependent manner [132, 133]. Shih et al. found
that the addition of 0.6 wt% nano-silica results in an increase in
the  compressive  strength  of  Portland  cement  (water/cement
ratio  of  0.55)  by  43.8%  [134].  Furthermore,  the  addition  of
nano-silica to MTA was shown to reduce the setting time and
increase  the  compressive  and  flexural  strength  in  7  days,
although changes were not significant [135]. Despite the wide
investigation of the rheological and mechanical properties of
nano-silica-contained  Portland  cement,  the  biocompatibility
and  bioactivity  of  this  composition  require  further  studies.

11.  MODIFICATION OF PORTLAND CEMENT WITH
HYDROXYAPATITE

Calcium silicate cement reinforced with hydroxyapatite are
biointeractive  materials  with  apatite  forming  ability  and  are
great  candidates  for  bone  substitute  materials  [136  -  138].
Evaluation of biocompatibility and inflammation response in
vivo  showed  more  acceptable  results  for  hydroxyapatite-
containing  cement  compared  to  uncoated  ones  [137].  The
incorporation of hydroxyapatite into tricalcium silicate cement
has  also  been  reported  to  reduce  its  genotoxicity  [139].  The
addition of nano-hydroxyapatite to Portland cement affects the
hydration  process  and  results  in  decreased  compressive
strength, although after immersion in SBF solution for 4 weeks
and  precipitation  of  bone-like  apatite  compressive  strength
increases  [140].  Dasgupta  et  al.  assessed  the  possessions  of
Portland  cement  by  adding  micro  and  nanoparticles  of
hydroxyapatite and observed better physical,  mechanical and
biological properties for the material with particle sizes of 168
nm.  Then,  according  to  their  results,  the  addition  of  nano-
hydroxyapatite could be an option for improving the properties
of  the  calcium  silicate-based  cement  [141].  Furthermore,
Tanomaru et al. reported that the addition of hydroxyapatite to
Portland cement affected negatively on compressive strength
and  solubility  of  the  cement,  however,  the  antibacterial
property  was  improved  [142].

12.  MODIFICATION OF PORTLAND CEMENT WITH
NANO-CALCIUM CARBONATES

Nano  calcium  carbonate  has  finer  particles  with  more
surface  area  compared  to  micro  calcium  carbonate  and  thus
affects more on hydration process and mechanical  properties
[143].  The  addition  of  calcium  carbonate  nanoparticles  to
Portland cement accelerates the setting process and reduces the
initial and final setting times and the water needed for cement
hydration  and  also  improves  mechanical  resistance  without
altering solubility or dimensional stability [143 - 145]. Calcium
carbonate  shortens  the  induction  period  of  the  hydration
process by nucleation effect and accelerating the formation of
ettringite.  It  has  been  reported  that  the  incorporation  of  1%
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nano-calcium  carbonate  into  Portland  cement  results  in  the
optimal performance of cement as it increases the compressive
strength of Portland cement by 7% after 56 days and reduces
the  permeability  by  13%  and  shrinkage  by  66%  [146,  147].
Further  increase  in  calcium  carbonate  concentration  might
affect the compressive strength adversely due to the increased
amount  of  harmful  pores  [148].  Overall,  the  modification  of
cement characteristics depends on the content and particle size
of added calcium carbonate [147].

13. RESIN-MODIFIED PORTLAND CEMENT

Due  to  many  drawbacks  of  MTA  and  Portland  cement,
more importantly, their poor bonding to resins, resin-modified
Portland  cement  was  introduced  in  2011.  TheraCal  is  a
hydraulic  silicate  cement  composed of  45% Portland cement
type ΙΙΙ, 43% resin and variable amounts of fumed silica and
radiopacifiers,  including  barium  sulfate  and  bismuth  oxide
[149, 150]. TheraCal releases a significant amount of calcium
ions throughout 28 days and alkalinizes its environment up to
pH 11, which decreases to pH 8.5 during 14 days. Furthermore,
it  has  significantly  less  solubility  than  ProRoot  MTA  and

Dycal  [151].  The  resin  matrix  of  TheraCal  alters  its  setting
mechanism and amount of calcium ion release, however, it is in
a  concentration  range  to  promote  the  proliferation  and
differentiation of hDPCs and the formation of mineralized hard
tissue [152, 153].  TheraCal has satisfactory compressive and
push-out bond strength to dentin and microshear bond strength
to  different  restorative  materials,  which  were  significantly
superior to MTA and Dycal [154 - 156]. In vitro evaluation of
biocompatibility  and  bioactivity  of  set  TheraCal  on  hDPSCs
showed  that  although  TheraCal  promoted  the  mineralization
after  21  days,  it  exhibited  low  cell  proliferation,  slower  cell
migration and ALP activity compared to Biodentin [157 - 159].
The re-mineralization speed of TheraCal is less than resin-free
hydraulic calcium silicate cement [160]. Moreover, the amount
of necrotic cells associated with TheraCal is higher compared
to other Portland cement-based pulp capping materials [161].
Clinical and animal studies investigating TheraCal are listed in
Table  2.  Considering  all  aspects,  it  seems  that  resin-free
Portland  cement  have  shown  more  satisfactory  results
concerning biocompatibility and clinical applications such as
vital pulp therapy.

Table 2. Clinical and animal studies on applications of resin-modified Portland cement (TheraCal).

Refs. Other
Groups Application Teeth Treatment

Period
Clinical/Radio-Graphical

Observations
Histological
Evaluations

Human Studies

Bakhtiar et al.
[191]

Biodentin
ProRoot MTA Partial Pulpotomy Third molars 8 weeks TheraCal had a success rate of 80%

Incomplete dentin
bridge formation was

detected in the TheraCal
group, no pulp

inflammation was
detected except for one
in the TheraCal group
Only 11.11% of the
TheraCal group had

normal pulp
organization

Gurcan et al.
[192]

Dycal
ProRoot MTA

Indirect pulp
capping

First Permanent
molars/ Second
primary molars

2 years TheraCal had a success rate of 87.7%
(No difference between groups) -

Erfanparast et
al.

[193]
MTA Direct pulp

capping Primary molars 1 year TheraCal had a 91.8% success rate
(No difference between groups) -

Cengiz et al.
[194] Ca(OH)2

Direct pulp
capping Premolar/molar 6 months TheraCal had a 66.6% success (No

difference with Ca(OH)2)
-

Menon et al.
[195] MTA Indirect pulp

capping Primary molars 6 months No significant difference between
groups in dentin forming -

Alqahtani et
al.

[196]
Ca(OH)2

Direct/Indirect
pulp capping - 3 months TheraCal had a success rate of 85.5%

(No difference between groups) -

Peskersoy et
al.

[197]

Biodentin
Dycal
MTA

Direct pulp
capping - 36 months

TheraCal had 72.1% and 73.6%
clinical and radiographical success

rate (No difference with dycal)
-

Sahin et al.
[198]

Dycal
Biodentin

Indirect pulp
capping Primary molars 24 months TheraCal had a 93.3% success rate

(No difference between groups)

TheraCal formed an
incomplete

odontoblastic layer and
showed pulpitis

Animal studies
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Refs. Other
Groups Application Teeth Treatment

Period
Clinical/Radio-Graphical

Observations
Histological
Evaluations

Cannon et al.
[199]

Pure PC
Resin-based

Ca(OH)2

GI

Pulp capping - 4 weeks Complete hard tissue formation in PC
and TheraCal group

TharaCal and PC
formed the thickest

dentin bridge

Lee et al.
[200]

ProRoot MTA
RetroMTA Partial Pulpotomy - 4 weeks -

TheraCal group showed
lower dentin bridge
formation, extensive
inflammation, less

osteocalcin and dentin
sialoprotein expression

Li et al.
[201] ProRoot Direct pulp

capping - 70 days No significant tooth discoloration

Mineralized tissue was
detected beneath the
exposed pulp with no

inflammatory response

Hinata et al.
[202]

MTA
Prototype

CSC

Subcutaneous
implantation - 28 days -

Ca and P containing
apatite-like surface

precipitated with the
least thickness

compared to other
groups

14. OTHER MODIFICATIONS

Quaternary  ammonium  compounds  are  widely  used  in
medicine due to their high antimicrobial efficacy as well as low
cytotoxicity  and  biological  effects.  The  incorporation  of
quaternary  ammonium  into  dental  adhesive  systems  and
endodontic cement has beneficial effects on antimicrobial and
mechanical properties and biocompatibility [162]. Light cured
resin-modified  Portland  cement  containing  quaternary
ammonium salt has been introduced as a pulp capping material
with  acceptable  antibacterial  activity  [163].  This  material
showed better alkalinizing activity and calcium release ability
compared to Dycal during 28 days after curing, although pH
value  and  calcium  release  amount  decreased  over  time.  The
modified Portland cement had acceptable cytotoxicity against
hDPFs and apatite forming ability in phosphate buffered saline
[164]. Furthermore, it enhanced the adhesion and migration of
hDPSCs  and  the  expression  of  osteogenesis-related  genes.
HDPSCs  showed  higher  alkaline  phosphatase  activity  and
calcium deposition when cultured with quaternary ammonium-
modified Portland cement [165].

Superplasticizers  are  fundamental  additives  in  concrete
production to control cement performance since they strongly
influence  concrete  rheology  properties.  Among  various
generations  of  superplasticizers,  polycarboxylate  with
spectacular  properties  has  been  evaluated  for  dental
applications  [166].  The  unique  structure  of  polycarboxylate
allows  applying  modifications  to  its  functional  group,  main
chain  or  side  chains  in  order  to  achieve  the  expected
performance  from  Portland  cement  [167].  Polycarboxylate-
modified Portland cement has a short setting time in the range
of 4-11 minutes  and presents  more flowability  in  a  very low
water:cement  ratio  [168].  On  the  whole,  the  addition  of
superplasticizers improves the workability of Portland cement
and leads to a rapid increase in the formation of high-strength
cement with low permeability [169].

Another modification to the chemical structure of Portland
cement is the addition of chitosan, which has been reported to

improve the handling properties of cement [170]. It should be
noticed  that  the  influence  of  chitosan  derivatives  on  the
behavior  of  Portland  cement  strongly  depends  on  the  main
substitution group of the derivative [171]. Chitosan crystallites
spread through the material structure, fill the pores and provide
a  homogenous  morphology,  which  in  turn  improves  the
biological  characteristics  of  the  cement  by  promoting  cell
adhesion  and  spreading.  Chitosan-modified  Portland  cement
exhibited good mechanical properties with improved solubility
and  extended  setting  time.  However,  compressive  strength
showed  a  decrease  dependent  on  the  chitosan  content  [172].
Furthermore,  chitosan  containing  Portland  cement  exhibited
less heavy metal leaching [173]. Carboxymethyl chitosan also
acts as an anti-washout additive and extends the setting time of
tricalcium  silicate  cement.  This  novel  bone  cement  presents
good  bioactivity  with  the  deposition  of  crystalline  apatite
[174]. Chitosan and dicalcium phosphate showed a synergistic
effect on the apatite forming ability of Portland cement [170].
Kamali et al. added chitosan and zirconium oxide to Portland
cement  as  a  substitute  for  MTA.  In  this  study,  malic  acid-
containing  chitosan  composed  the  liquid  phase.  Malic  acid
reacted with free amino groups of chitosan and consequently
provided  expanded  polymer  chains,  which  allowed  the
enhanced  formation  of  hydration  by-products  within  the
polymer  chains  [175].

Geopolymer is a kind of amorphous aluminosilicate with
satisfying  physical  and  mechanical  properties  and  durability
due to the polymerization reaction [176]. The apatite formation
ability of geopolymer when immersed in SBF solution shows
the potential of this material to be used in bioenviroments [177,
178].  Modification  of  white  Portland  cement  with
aluminosilicate materials such as calcined kaolin geopolymer
system produces  a  favorable  bone  repair  material  with  rapid
setting  and  high  compressive  strength.  Furthermore,  this
system  exhibited  good  bioactivity  when  exposed  to  SBF
solution and promoted hydroxyapatite precipitation [179, 180].
Fig.  (1)  shows  various  applications  of  Portland  cement  in
dentistry.

(Table 2) contd.....
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Fig. (1). Various applications of Portland cement in dentistry. (A) Radiographic evaluation of treatment of root perforation using PC after 9 years;
Note the radiographic repair with no radiolucency in the periodontal region [14] Available online under a Creative Commons license Attribution-Non
Commercial-No-Derivatives 4.0 International (CC BY-NC-ND 4.0). (B) Histological evaluation of pig's pulp tissue following pulp capping by PC; A
complete calcified bridge is formed and the pulp tissue presents a normal condition free of inflammation [17] Available online under a Creative
Commons license Attribution. (C) Radiographic evaluation of treatment of resorption area using PC shows root repair after 11 year [14] Available
online under a Creative Commons license Attribution-Non Commercial-No-Derivatives 4.0 International (CC BY-NC-ND 4.0). (D) Application of
PC as a root-end filling material after periapical surgery; Periradicular tissue regeneration is obvious after 6 months [15] Available online under a
Creative Commons license Attribution-Non Commercial-No-Derivatives 4.0 International (CC BY-NC-ND 4.0). (E) Radiographic evaluation of apex
of 11 following using PC as an apical plug; Note the total repair after 5 months [33] Available online under a Creative Commons license Attribution-
Non Commercial-No-Derivatives 4.0 International (CC BY-NC-ND 4.0).  (F)  Histological evaluation of furcal perforation using PC; New bone
formation with normal pulp conditions are detectable [13] Available online under a Creative Commons license Attribution-Non Commercial-No-
Derivatives 4.0 International (CC BY-NC-ND 4.0)..

CONCLUSION

As  a  biocompatible  bioactive  endodontic  cement  with
favorable  characteristics  and  a  wide  range  of  applications,
Portland cement and its derivatives have been under multiple
investigations,  although  extensive  issues  are  still  open  for
further  research.  As  reported  in  this  review,  a  significant
attempt  has  been  made  to  extend  the  application  scope  of
Portland  cement  with  various  modifications,  such  as  the
inclusion  of  polymers,  radiopacifiers,  metal  oxides,
superplasticizers  and  nanomaterials,  namely  nano-silica,
titanium oxide and calcium carbonate. Consequently, various
MTA  types  and  resin-modified  Portland  cement  have  been
introduced.  In  the  dentistry  field,  Portland  cement  is  widely
serviceable in restorative dentistry and particularly in different
kinds of endodontic treatments. We can conclude that Portland
cement  has  the  potential  to  be  used  as  an  acceptable  pulp

capping  material  with  the  least  complaints  in  the  long  term.
The  addition  of  radiopacifiers  can  contribute  to  improve  the
utilization  efficacy  of  Portland  cement.  Given  the  valuable
properties  of  Portland  cement  and  its  low price  compared  to
MTA,  considering  it  as  an  alternative  to  MTA  seems  to  be
beneficial.  Nonetheless,  the key issue is bringing the various
modified Portland cement into clinical practice and evaluating
them in the bioenvironment. Besides, it has been reported that
some  toxic  heavy  metals  such  as  chromium  and  lead  are
released from Portland cement. This can be of concern when
Portland  cement  is  in  contact  with  hard  and  soft  tissues  and
should be considered a subject for future studies.
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MTA = Mineral Trioxide Aggregate



An Overview as a Root Repair Material The Open Dentistry Journal, 2022, Volume 16   13

HBSS = Hank's Balanced Salt Solution
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