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Abstract:

Introduction:

In order to survive, cancers control immune systems and evade immune detection using mediators consisting of immune checkpoint
molecules and cellular systems associated with immune suppression.

Methodology:

During the development of cancer and chronic infections, the immune checkpoints and cellular components including regulatory T
cells, myeloid derived suppressor cells and cancer associated fibroblasts are often enhanced as a mechanism of immune subversion
and have therefore become very important therapeutic targets.

Conclusion:

In this review, we will discuss the complexity of immune-suppressive mechanisms in the tumor milieu of cancers, including oral
malignancy.

Keywords: Immune suppression, Tumor Microenvironment (TME), T-Regulatory cell (Treg), Myeloid Derived Suppressor Cell
(MDSC), Cancer-Associated Fibroblasts (CAFs), Oral malignancy.

1. INTRODUCTION

Accumulated  evidence  suggests  that  the  progression  and  malignancy  of  tumors,  including  Oral  Squamous  Cell
Carcinoma (OSCC), is not only promoted by the aggressive phenotypes of tumor cells, but is also regulated by the
biological influences of the micro environments within the tumor tissue that affect the host’s immunological response
[1].  Overexpression  of  immunosuppressive  cytokines,  such  as  IL-10,  TGF-β  and  IL-1β  can  cultivate  a  Tumor
Microenvironment (TME) conducive to evasion and tumor proliferation [2 - 4]. Cross talk between cancer and stromal
cells including Cancer Associated Fibroblast (CAF) is mediated by IL-1β, and several other  cytokine cascades [5].  The
role  of the  immune  suppressive  mechanisms  that are  utilized  by Myeloid-Derived  Suppressor  Cells  (MDSCs) is
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essential for the suppression of T cell activity [6]. Co-evolution of both epithelial and stromal phenotypes contributes to
carcinogenesis  [7].  There are specific  metabolic pathways that  have been identified and shown to contribute to the
enhancement of regulatory T (Treg) cells to suppress anti-tumor immunity [8]. The complex activity within immune
checkpoint molecules include both inhibitory and co-stimulatory pathways that are located between Antigen Presenting
Cells (APC) and effector T cells (or effector Treg), which can counteract T-cell mediated immunity due to exhaustion
of  the  T cells  by  activated  Treg  and MDSCs [9].  The  aim of  this  review is  to  summarize  the  immune suppressive
networks that could therefore provide novel strategies to overcome T cell exhaustion [10], and to provide a clue for
effective immunotherapeutics against OSCCs and other cancers [11].

2. IMMUNE CHECK POINT INHIBITORS IN CANCERS

The regulation of T cell activity requires at least two signals mediated by receptors. First, it requires T cell receptors
which specifically engage peptides presented by Major Histocompatibility Complexes (MHCs) on Antigen-Presenting
Cells (APCs). Second, T cell activation requires CD28 as a receptor for B7 family ligands that are located on APCs
[12]. The aberrant expression of T cell co-stimulatory (B7 family) molecules in the tumor milieu has been attributed to
the  suppression  of  anti-tumor  immunity.  Cytotoxic  T-Lymphocyte-Associated  Protein-4  (CTLA-4;  also  known  as
CD152) is one of the first inhibitory receptors shown to be a suppressor of T cell response [13]. CTLA-4 is structurally
similar to CD28 and binds to CD80 (B7-1) / CD86 (B7-2) on APCs (or tumor cells) at a higher affinity than CD28,
which  suggests  an  interference  with  T  cell  activation  [14].  Overexpression  of  CTLA-4  is  associated  with  a  poor
prognosis or higher clinical stages in nasopharyngeal carcinoma and breast cancer, respectively [15, 16]. CTLA-4 is the
first immune check point targeted in the treatment of cancer. The blocking of CTLA-4 reduces tumor growth in murine
models,  including  melanoma,  and  colon  carcinoma  [17,  18].  Both  CD86  and  CTLA-4  showed  significant
overexpression  in  the  OSCC  tissues  with  differentially  methylated  promoters  [19].  Association  of  CTLA-4  gene
polymorphism with OSCC has also been reported [20].

Another immunological checkpoint that facilitates tumor cell evasion involves the interaction between Programmed
Death-1 (PD-1; CD279) and Programmed Death Receptor Ligand-1 (PD-L1; also known as CD274 or B7-H1). PD-1 is
first identified as a type-I transmembrane receptor in a murine T-cell hybridoma clone undergoing Activation-Induced
Cell Death (AICD) [21]. A recent study evidenced that CTLA-4 and PD-1 exert their effects at different stages of T-cell
activation. CTLA-4 works mainly at the T cell priming stage in the lymph nodes, whereas PD-1 mainly promotes the
cells in the periphery [22]. The expression of PD-1 on T cells has become one of the hallmarks of exhausted T cells. In
multiple human tumors, a significant proportion of Tumor Infiltrating Lymphocytes (TILs) express PD-1 and are often
associated with impaired CD8+ T cell function [23, 24]. In OSCCs, a correlation was shown between PD-L1 and tumor
size and lymph node metastasis or other malignant phenotypes [25, 26]. Interestingly, however, the expression of PD-1
and PD-L1 in blood and lesion samples is elevated in both patients with OSCCs and pre-malignant actinic cheilitis [27].
These  results  suggest  that  the  evasion  of  T  cell  activity  by  PD-L1  through  signals  of  PD-1  is  essential  for  the
progression of OSCCs.

PD-1/PD-L1 interaction has been implicated in promoting the induction of Treg cells [28]; the blocking of PD-1 by
antibodies suppresses TGF-β and retinoic acid-induced Treg conversion from naïve T cells, and treatment with a PD-1-
blocking antibody in combination with a tumor vaccine was shown to reduce Treg infiltration into tumors in vivo [29].
Different immune checkpoint inhibitors including PD-1 and CTLA-4 can work synergistically due to non-redundant
mechanisms. The synergistic blocking of PD-1 and CTLA-4 enhances and prolongs the efficacy of cancer vaccine to
reject B16 melanoma cells by elevating the CD8+ / Treg ratio [30]. Studies have confirmed the drastic synergy effects
of vaccines against tumor neoantigens with immune check point inhibitors. These studies have demonstrated that anti-
CTLA4 treatments provide a highly effective immune therapy for melanoma [31,  32] and anti  PD-1 treatments are
highly  advantageous  for  non-small  cell  lung  cancers  [33].  Positive  results  have  also  been  observed  for  oral
malignancies,  whereby  a  combination  of  platinum-based  chemotherapy  and  treatment  with  nivolumab,  PD-1
monoclonal antibody resulted in a longer overall survival rate for patients with recurrent squamous-cell carcinoma of
the head and neck [34].

Another potentially significant protein is the Inducible Co-Stimulator Ligand (ICOSL), also known as B7-H2. It
shares  homology  with  CD28,  and  similar  to  CTLA-4,  it  is  induced  following  T  cell  activation  [35].  In  melanoma
patients, the specific expansion of ICOS positive Tregs following high-dose IL-2 therapy correlates with worse clinical
prognoses [36]. Acute myeloid leukemia patients exhibiting ICOSL positivity had significantly decreased survival [37].
The polymorphisms of the CTLA-4 in combination with ICOS seems to be possible predisposing factors for OSCC
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[38]. Interestingly, ICOS/ICOSL axis could have a dual effect to participate in anti-tumor T cell response as well as a
pro-tumor  response  connecting  with  Tregs’  activity,  therefore  both  antagonist  and  agonist  antibodies  targeting  this
pathway could be effective for cancer treatment. [39].

B7-H3 is part of the B7 family whose receptor remains unidentified. The in vivo expression of B7-H3 is reported in
OSCC  [40].  Contradictory  findings  show  both  co-stimulatory  and  co-inhibitory  functions  [41  -  44].  B7-H4  also
represents  a  T  cell-co-inhibitory  molecule  whose  expression  in  the  tumor  milieu  has  been  associated  with  poor
prognosis of esophageal carcinoma [45], OSCC [46] and ovarian carcinoma [47, 48]. Tumor-Associated Macrophages
(TAMs) express high levels of B7-H4, which is attributed to the presence of IL-6 and IL-10 [48]. Although, ligands on
T cells are unidentified, the mobilization of stromal cells for immune evasion involving B7-H3 and B7-H4 could be
similarly regulated by OSCCs.

V  domain-containing  Ig  Suppressor  of  T-cell  Activation  (VISTA)  is  a  member  of  the  B7  family  that  bears
homology to PD-L1 and is exclusively expressed within the hematopoietic compartment. VISTA overexpression on
tumor cells interferes with protective antitumor immunity in vivo in mice [49] and human OSCCs [50].

3. REGULATORY T CELLS IN THE IMMUNE SUPPRESSIVE STRATEGIES IN CANCER

CD4+CD25+cells, Tregs, are identified as a naturally occurring CD4+ T-cell subset (about 5-10% of all peripheral T
cells) by Sakaguchi and colleagues [51]. Most Tregs are generated in the thymus, and serve as regulators of overloaded
immune  reaction.  It  has  been  suggested  that  the  Forkhead  Box  P3  (FoxP3)  transcription  factor  represents  an
intracellular marker for Treg. There are also other markers, including CTLA-4, Glucocorticoid-Induced TNF Receptor
(GITR),  Lymphocyte  Activation  Gene-3  (LAG-3),  and  neuropilin  [51].  FoxP3  transcription  factor  represses  IL-2
production of Tregs, which also expresses IL-2 receptor (CD25). Therefore, for the survival of Tregs, an outer supply of
IL-2 is essential [52]. In tumor tissues, many Tregs develop into effector Tregs which express CTLA-4, PD-1 or CCR6
at higher levels, and engage in the disruption of host immune systems including those in OSCC patients [53 - 55]. The
elevated Foxp3 protein expression is a predictive factor for OSCC progression [56]. A higher frequency of double-
labelled FoxP3+ and Toll-Like Receptor Protein 2 (TLR2)+ Tregs is observed within the immune cells of OSCC patients
[57]. So, the blockade of Treg function using particular TLR ligands may be a potential target for therapeutic strategy.

4. MYELOID-DERIVED SUPPRESSOR CELLS IN THE TUMOR MICROENVIRONMENTS

MDSCs  are  a  heterogenic  cell  population  consisting  of  immature  myeloid  progenitors  and  precursors  of
granulocyte, macrophages and dendritic cells [58]. They are expanded in chronic, environmental, or tumor-associated
inflammations and exert immune-suppressive effects, as well as supporting tumor growth and metastasis in a number of
ways [59 - 62].

MDSCs have been described in tumor-bearing mice, in which they can be identified by the cell surface markers of
CD11b and Gr-1 [63, 64]. They are further subdivided into two populations using Gr-1 isoforms Ly6G and Ly6C. The
differential expression of these molecules distinguishes monocytic (M)-MDSCs from granulocytic (PMN)-MDSCs. M-
MDSCs are CD11b+Ly6C+ Ly6Glow/-; PMN-MDSCs are CD11b+Ly6C-Ly6G+ [65, 66]. Since humans lack an analogue
of Gr-1,  the human M-MDSCs are CD11b+CD14+CD15-IL4Ra+HLA-DRlowCD33+;  PMN-MDSCs are CD11b+CD14-

CD15+HLA-DRlow/-CD33+ [67].

Whereas MDSCs exist at a very low level in healthy peripheral blood, in cancer patients the population is expanded
[6, 68]. The expansion of MDSCs is induced by pro-inflammatory cytokines including VEGF, IL-1β, IL-6, IL-17 and
TNF-α. VEGF inhibits Dendritic Cell (DC) development via NF-kB activity while driving MDSC accumulation [69].
IL-1β is a potent inducer of MDSC accumulation and suppressive activity [70] and IL-6 is a downstream mediator of
the IL-1β-induced expansion of MDSC [71]. While IL-17 is an inducer of MDSC, the effects may be mediated by IL-6
[72]. Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF) is required for DC differentiation; however, high
levels of GM-CSF induce MDSC accumulation [73].  TNF-α induces M-MDSC to promote immune tolerance [74].
Prostaglandin (PG) E2 is an inflammatory chemical mediator generated by Cyclooxygenase (COX)2. Many tumors, as
well as tumor-infiltrating cells, produce PGE2. PGE2 promotes MDSC differentiation, while elimination of COX2 or
PGE2 in tumor bearing mice reduces MDSC differentiation [75]. High Mobility Group Box (HMGB)1 is released from
myeloid cells as a response to sepsis, infection, or arthritis. HMGB1 promotes the development of MDSCs from bone
marrow progenitor cells, and resulted in the increased production of IL-10 [76]. Tumor-derived lactate is a product of
the “Warburg effect” [77]. The lactate also develops MDSCs, and blunts immune surveillance [78, 79].
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M-MDSCs  are  highly  immunosuppressive  and  exert  their  regulatory  activity  mostly  in  an  antigen-nonspecific
manner.  In  contrast,  PMN-MDSCs  are  moderately  immunosuppressive  and  suppress  immune  responses  mainly  by
antigen-specific  mechanisms  [80].  Both  subsets  of  MDSCs  are  expanded  systemically  in  a  number  of  human
malignancies. Renal cell carcinoma, colorectal cancer, and hepatocellular carcinoma are associated with PMN-MDSC,
while glioblastoma, ovarian cancer and multiple myeloma are associated with M-MDSC. Metastatic melanoma and
non-small cell lung cancer are associated with both types of MDSCs [81]. Expression of VISTA and MDSC markers
are also correlated with the poor prognosis in primary OSCC [50].

In order to compare the immune-modulatory effects of OSCCs in primary and advanced stages, we have established
a metastasized model (L5-11cells) representing more malignant phenotypes than the parental OSCC (Sq-1979 cells)
when implanted in the syngeneic mice [82]. Our results revealed that it is metastasized L5-11 cells, not early-stage
Sq-1979 cells that predominantly induce PMN-MDSCs in tumor-bearing mice [83]; this is not simply reflecting the
differential tumor size, since even the larger amount of inoculation of Sq1979 cells could not induce the MDSC cells in
the  mice.  We  have  also  confirmed  that  the  quantity  of  IFN-γ  produced  by  stimulated  spleen  cells  is  significantly
suppressed in mice implanted with Sq-1979 and L5-11 cells; however, the production of IL-10 is significantly elevated
in  mice  implanted  with  Sq-1979  while  markedly  suppressed  in  L5-11  cell-implanted  mice  [84].  Thus,  our  results
demonstrated  that  unlike  primary  OSCC  cells,  the  metastasized  OSCC  cells  have  acquired  immunomodulatory
functions  mediated  by  PMN-MDSCs.

MDCSs utilize multiple suppressive mechanisms to promote tumor expansion. They directly suppress T cells by
starving them of amino acids, inducing apoptosis, and reducing their intracellular signaling. MDSC-inducing immune
suppressions are mediated by Arginase (ARG)1, inducible NOS (iNOS), NO [85 - 87], sequestration of cysteine, and
decreased  expression  of  E-selectin  [88,  89].  In  the  case  of  OSCC  patients,  CD14+/CD16+  monocyte-derived
macrophages, a potential subpopulation of MDSCs, are increased in circulating peripheral blood [90]. The effect of
MDSCs on the systemic immunity of advanced-stage OSCC patients may be the cause of the increased proportion of
CD57+ T cells [91], or the higher levels of Th2 in combination with relatively lower levels of Th1 cytokines [92].

5. CANCER-ASSOCIATED FIBROBLAST AS A MEDIATOR OF IMMUNOSUPPRESSION

Several  lines  of  evidence  have  demonstrated  that  stromal  cells  surrounding  tumor  cells  play  important  roles  in
developing tumor tissues. High-grade invasive OSCC cells specifically induce PD-L1 on dendritic cells in the TME
[93]. In head and neck cancers, CAFs have been suggested to promote angiogenesis, invasion metastases, and Treg
induction  via  several  cytokines  including  HGF,  IL-33,  IL-6,  CCL2,  CCL7,  TGF-β1,  VEGF  and  TNF-α  [2].  CAF-
educated macrophage progenitor cells reduce T cell proliferation via TGF-β1, IL-10 and ARG1, suggesting that CAFs
can induce protumoral TAMs in the tumor immunosuppressive microenvironment [94]. In OSCC tissues, CAFs are
divided into 3 grades on the basis of the expression of alpha smooth muscle actin, and the CAFs in the higher grade
promote CD163 positive macrophage which is associated with poor prognosis [95]. Constitutive production of IL-1β
from OSCCs enhances IL-6 production of CAFs [4]. IL-6 and GM-CSF, produced by pancreatic CAFs, are important
mediators of MDSC differentiation [96]. Our results using a mouse OSCC model suggest that the immune-suppressive
function of mesenchymal stromal cells is specifically enhanced by humoral factor(s) from primary OSCC cells [97],
which, however, do not induce any MDSCs in the tumor-bearing mice [84]. Therefore, immune-modulatory functions
of OSCC that are dependent on mesenchymal stromal cells and MDSCs can be uniquely regulated according to their
malignant stages.

6. THERAPEUTIC APPROACH OF ORAL PRE-CANCEROUS DISORDERS

The immune system plays an important role in the development and progression of OSCCs and other cancers. As
already  mentioned,  recent  cancer  immunotherapies  have  targeted  the  molecules  in  the  tumor  microenvironment  of
immune check point inhibitors including CTLA4 [17, 18, 29 - 32], PD-1 [29, 33, 34] or ICOS [39].

The histopathology of oral malignancies has shown that some OSCCs develop from Oral Potentially Malignant
Disorders (OPMDs) in a complex tissue microenvironment.  Such examples of OPMDs include:  Oral  Erythroplakia
(OE),  oral  leukoplakia  (OLK),  oral  lichenplanus  (OLP)  [98,  99].  Of  these,  it  is,  OLP  that  is  most  remarkable
histologically due to its high number of lymphocytes. There are various therapeutic attempts being performed that aim
to  re-organize  the  microenvironment  components  of  OLP.  These  treatments  commonly  include  Thalidomide,  an
immune  stimulant  that  inhibits  TNF-α  and  stimulates  T  cells,  M1  macrophage  and  NK  cells  [100,  101].  Another
immune-stimulant, curucumin [102] has also proven effective in OLP treatments.
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The use of steroids is another mainstay treatment for OLP because of their potential to inhibit immune cells that
reduce cytokine production [103]. Other therapies recruited in the treatment of OLP employ the use of mycophenolate,
a potent suppressor of B and T cells and chemokines [104], and pimecrolimus, which is a calcineurin inhibitor that has a
suppressive effect on cytokines [105].

CONCLUSIONS AND FORESIGHT

As summarized in Fig. (1), there are several mediators involving specific cytokines and cellular systems associated
with tumor evasion of host immune systems. Our results demonstrate that the immunosuppressive efficacy of OSCC
milieu is developed in a stepwise manner depending on the stages of OSCCs [84]. In the early stage, mesenchymal
stromal cells (i.e., CAF) could be a unique effector; humoral factor(s) from OSCC cells force CAF to exert immune
suppression  via  the  direct  cell  contacts  to  effector  T  cells  [97].  Potentiated  CAF  could  also  affect  other  immune-
suppressive  mediators  such  as  Treg,  TAM and MDSCs.  In  the  advanced  stage,  MDSCs could  possibly  be  a  major
conductor of immune-suppression [83]. In the TME, the effector Treg, harboring CCR6, PD-1 and CTLA-4, could be
mobilized by antigens and/or chemokines secreted from OSCC cells. As shown in Fig. (1), there are several cytokines,
immune-check points, and cellular components among the TME of OSCC. However, how OSCCs differentially utilize
the immune modulatory aspects involving CAFs, MDSCs and several other factors is  not fully understood. Further
elucidation of the regulatory pathways structured by tumor-host interactions could identify important therapeutic targets
in OSCC development.

Fig. (1). A schematic illustration of the cellular components and factors responsible for the immune-suppressive mechanisms in the
tumor micro environment. Cellular components including Oral Square Cell Carcinoma (OSCC), Myeloid Derived Suppressor Cell
(MDSC), Cancer Associated Fibroblast (CAF), Tumor Associated Macrophage (TAM), regulatory T cells (Tregs) and effector T
cells, interact mutually using soluble factors, including Interleukins (ILs), C-C Chemokine Ligands (CCLs), Tumor Necrosis Factor
(TNF)-α,  Tumor  Growth  Factor  (TGF)-β,  High  Mobility  Group  Box  (HMGB)  1,  Granulocyte  Macrophage-Colony  Stimulating
Factor (GM-CSF), Vascular Endothelial Growth Factor (VEGF), Arginase (Arg) 1, Prostaglandin (PG) E2, Nitric Oxide (NO) and
lactate. CAFs and Tregs can also interact directly with effector T cells via receptor-ligand interactions, including Programmed cell
Death  (PD)-1,  Cytotoxic  T-Lymphocyte-Associated  Protein  (CTLA)-4,  Inducible  Co-Stimulator  Ligand  (ICOSL),  V  Domain-
Containing Ig Suppressor of T-Cell Activation (VISTA) and C-C Chemokine Receptor (CCR) 6.
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